r

Imw- |

TASK PLANNING WITH
UNCERTAINTY FOR
ROBOTIC SYSTEMS

by

Tiehua Cao

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering
Troy, New York 12180-3590

March 1993

CIRSSE REPORT #137

L oEm W omm omn

W

N

)
b

i

)

U =& LKi m [y

(17

|

I

1K

© Copyright 1993
by
Tiehua Cao
All Rights Reserved

ii

e

To my parents

11

O R T B R

(i | LI I o) D R

"

l“ I

oy

|’\ v
Lo

CONTENTS

LIST OF FIGURES o ot o i e e e e e e e viii
ACKNOWLEDGMENTSo v s e e e xiv
ABSTRACT . . o o o e e e e e e e e e XV
1. INTRODUCTION . . o it e e e et e e e 1
1.1 Motivation . . « v v v v v e e e e e e e e e e [1
1.2 Objective of the Research v v 3
1.3 AppProach 5
1.3.1 A High Level Representation 5
1.3.2 Hierarchical Plarining Decomposition 6
1.3.3 Generalized Fuzzy PetriNetso 8
1.3.4 Planning for Subgoals e 8
1.3.5 Alternative Error Recovery. oo oo 9
1.4 Contributions . . -« v v v v v e e e e e e e 11
1.5 Thesis Qutline. . . .« « v v v v v v vt et e 12
9 LITERATURE REVIEWo it oo e oo 15
2.1 Introduction v« v o v v vt e e 15
2.2 Task Planning o o oo i 15
2.3 Assembly Planningo e 18
2.4 Planning Under Uncertainty« oo vv oo e e 21
2.5 Petri Nets with Fuzzy Datao oo oo 24
2.6 Conclusion of Literature Reviews 26

3. AND/OR NET REPRESENTATION FOR ROBOTIC TASK SEQUENCE
PLANNING . . . o i e e e e e e e e e e e e e 28
3.1 Introduction . . . « v v v v v e e e e e e e e e 28
3.2 AND/OR Net Representation 30
3.2.1 AND/OR Net Algorithmo 32
3.3 AND/OR Net to Petri Net Mapping 37
3.3.1 AND/OR Net to Petri Net Mapping Algorithm 38

v

I

il |

i

IR mm

il

1N]

{

3.3.2 Directed AND/OR Net and the Properties of the Mapped

Petri Net . v v v v o e e e e e e e e 43

34 Data Structure for Searching Sequences in the AND/OR Net 45
3.4.1 Searching All Possible Sequences 46

3.4.2 Searching the Shortest Sequence 48

3.4.3 Searching Sequences in Resulting Petri Nets 30

3.5 Example of Task Sequence planning Using AND/OR nets. 52
3.6 ConClUSIONS . « + v v v v v e v e e e e 56

_ TASK DECOMPOSITION AND ANALYSIS OF ROBOTIC ASSEMBLY

TASK PLANS USINGPETRINETS« v v oo oo oo e 60
4.1 Introduction v v v v v v v e e e e 61
4.2 Representation of a Robotic Assembly System 62
4.3 AND/OR Net and Petri Net Representation for High Level Tasks . . 66
4.3.1 AND/OR Net Representation for Assembly Sequences 67
4.3.2 AND/OR Net to Petri Net Mapping- 71

4.4 Level 1 Petri Net Decomposition.« oo v v v v oo oo v 73
4.4.1 Decomposition Algorithm: PNOtoPN1. 73
442 Analysiso [74
4.4.3 PNilfortheExample 77

4.5 Level 2 Petri Net Decomposition.« v v v v oo oo 79
4.5.1 Decomposition of Motion to Free-Motion and Fine-Motion . . 79
4.5.2 Adding Resource Places tothe Net 82
4.5.3 Independence of Plans and Sensors 85

4.6 Simulation Results and Discussions oo 92
4.7 ConcluSionS . « « v v v v v v e e e e e e e e e 96

_ REPRESENTATION AND ANALYSIS OF UNCERTAINTY USING FUZZY

PETRINETS . . . o o i e e e e e e e i e e e e e 97
5.1 IntroduCtion . . » v v v v v v v v o e e e e e e e 97
5.2 Fuzzy PetriNetso 102
5.3 State Representation of an FPN Model 107
5.4 Reasoning Rulesinthe FPN 108
5.5 Property Analysis for Several Basic Cases with Local Fuzzy Variables 109

Lo
[i

i

i
&

l — B
[Re——,

[

551 Case l: Local Fuzzy Variables Unmodified by Transitions . . . 110

55.2 Case 2: Local Fuzzy Variables Modified by Transitions 111
553 (Case 3: Transition Firing Depends on Input Local Fuzzy Vari-
ABlES . . e e e e e e e e e e e 113
56 FPNs with Global Fuzzy Variables: Example of Task Sequencing . . . 120
57 FPNs with Local Fuzzy Variables: Examples of Robotic Sensing . . . 121
5.7.1 Local Fuzzy Variable for Sensor-Based Error Recovery121
5.7.2 Modeling Sensing Operations as Mutually Exclusive Transitions124
58 CONCIUSIONS .« « v v v v e v v v e e e o m e e 127
. TASK SEQUENCE PLANNING USING FUZZY PETRI NETS 129
6.1 IntroduCtiON . . v v v v v v o e e e e e e e e 129
6.2 State Representation for Task Sequences- 131
6.3 Fuzzy Sets for Modeling System Stateo 137
6.3.1 Fuzzy Sets oo 138
6.3.2 Fuzzy Petrimet« 139
6.4 An Algorithm for Assigning Global Fuzzy Variables 145
6.4.1 Prime Number Marking Algorithm 145
6.4.2 Interpretation of Prime Token Values . . - « o« oo v v oo e 146
6.4.3 Feasible Sequences in the Fuzzy Petri Net 149
6.4.4 Multiple Assigned Key Transition Sequences 152
6.5 Fuzzy Representation for Multiple Soft Components 153
6.5.1 Fuzzy Reasoning for Multiple Soft Components 153
6.5.2 Generalized Prime Number Marking Algorithm 155

6.5.3 Interpretation of Fuzzy Values for Multiple Soft Components . 157

6.6 Simulation Results and Conclusions o v v v 160

. SENSOR-BASED ERROR RECOVERY FOR ROBOTIC TASK SEQUENCES

USING FUZZYPETRINETSo oo oo v oo e 164
7.1 Tntroduction . . o v v v v v e o e e e e e e e e e 164
7.2 Fuzzy Petri Net Representation of Task Level Operations 166
7.3 Fuzzy Transition Rules: Global Fuzzy Variables 170
7.4 Execution of Plans on the Fuzzy PetriNet 173

7.4.1 Mutually Exclusive Transitions-+« 174

vi

miil o ®i W 0 Wi W CRTTHI] T] Wiy mEm oW

1t
T

| "M

IH\ "

r

749 Deterministic and Nondeterministic Fuzzy Petri Nets 175

7.4.3 Planning and Execution on the NDFPN with ME Transitions 176

7.5 Error RECOVETY . . . v v v v v v v oo v o e 184
7.5.1 Error Recovery for One Soft Component 185

7.5.2 Error Recovery for Multiple Soft Components 190

7.6 An Algorithm for Generating an Executable fuzzy Petri Net 193
7.7 Examples oo 195
7.7.1 Example of Alternative Local Error Recovery 197

7.7.2 Example of Alternative Global Error Recovery 198

78 Conclusion v v vt 203

8. CONCLUSIONS . . o it e e e e e e e e e e s 204
8.1 SUMMALY . .« v v v v v e v e e e e e e e 204
892 TFuture Work . . . v v v i e e e e e e e 206
REFERENCES o oo e e e e e e e e e e e 208

vii

[l

1

ITIH

Bl

il

11
[T

[}

TR

3.1

3.2
3.3
3.4
3.9
3.6
3.7

3.8
3.9
3.10
3.11
4.1
4.2
4.3
4.4

4.5

LIST OF FIGURES

Example of a moving task for a robot. (a) Initial state. (b)
Final state. . .« v v v v e e e e e e

System geometric state representation.
The AND/OR net representation for the example.
The Petri net representation for the example.
The connectedness with p; and its neighboring places.
The sequence of markings and corresponding operations. . .

A robot moves a book from table 1 to table 2. () Initial state.
(b) Final state.o oo

System geometric states representation for moving book. . .
The AND/OR net representation for moving book.
The Petri net representation for moving book.
A feasible sequence from the initial state to the final state. . .
A strut-triangle assembly system.o
The AND/OR net representation.o covvv e
The Petri net, PN0, mapped from the AND /OR net.

Decomposition of a place to a subnet. The net in (a)is N =

(P,T,a,), and the net in (b) is N =(P,T,d,8). - - .

Level 1 Petri net, PNI, for the example in Figure 4.1. Each
transition in the net represents an operation. The label in-
dicates the type of operation: mv(Move), grs(Grasp), un-
grs{UnGrasp), mvem’ and mvem(Compliant Move, in different
directions); and the objects involved: R1(robot 1), Si(strut
1), INIT (initial position of robot 1), R1S1(R1&S1 subassem-
bly), H(holder), TEMP(temporary position of R1S1 in the free
space), $253T(52&S3 subassembly on the table), S152S3T (51
&52&53 assembly on the table). The first operand is the mov-
ableobject.

viil

35

53

. o4

33
57
38
67
70
72

78

e

LA}
s

o

Iw LELl

4.6

4.7

4.8

4.9

4.10

4.11
5.1

5.2

Decomposition for the AND/OR net to Level 2 Petri net. In
the resulting Petri net, places ‘P’ are the precondition plans,
for the corresponding motion or mating operations. Place ‘C2
is used to indicate the arm camera, which is used for sensor-

based MOLION. . + « « v v v e v e e e e

Decompositions for Level 2 Petri net, PN2, with expanded

Motion Operations. . . . « ¢« .« oo e

Adding a place with loop connections to transitions in a Petri
net and/or a place separable with the net.

Level 2 Petri net, PN2, with a resource place, C2, introduced
to model camera availability. In addition, each move and
grasp operation has a resource place, P, as a precondition.

Decomposition for plan-sensor dependence.
The final Petrinet. . « v v v v v v v v e v e e e

A robotic system for a grasp task. The robot(R) moves to
the strut(S) on the table and grasps it. (a) shows the initial
state for this task. R has 6 degrees of freedom for the position
and orientation of the gripper, (z,y,2,¢,w,%). S is defined
by the position of its center and the angle between S and the
2’ axis, (z',y',8). (b) shows the final state of this task. RS
is described by z”, the distance between the grasping point
and O”, the center point of S, under the assumption that the
grasp position will be on the strut.

The fuzzy Petri net representation for the robotic assembly
task shown in Figure 5.1. (a) shows the initial state of the
system. (b) shows the final state of the system. R, and R.
means the robot gripper is open or closed, respectively. p, o,
and o of R, and S in (a) are mapped by fi to those of R.S, R,
and S in (b). Note that the same color of tokens in p; in (a)
and in p; and p, in (b) indicates that a global fuzzy variable is
attached to these tokens. Their colors are different from that
of the token in pp in (a) and (b). The fuzzy marking variable
o defines alternative output states R.S or R, S. The global
fuzzy values might be o(R,) =0, 7(R.S) = 1, o(R.) = 0. The
local fuzzy variable p describes the positional uncertainties
of the robot and object in terms of their fuzzy membership
fUNCEIONS. . & v v v e e e e e e e e e e e e e

ix

ni O omn mn

i Wl
i il

W

L]

& i1}

.

]

Il i

L m o

Ll

WF n o

y

{w

r

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

3.11

5.12

The input local variables and output local variables for a tran-
sition t; of Case 1. Before t; is fired, p;, contains a token,
1 < u < k. After t; is fired, pi, obtains a token, 1 < v < s.
All local fuzzy variables for this case are fixed. 109

The input local variables and output local variables for a tran-
sition t; of Case 2. Before ¢; is fired, p;, contains a token,
1 < u < k. After t; is fired, pi; obtains a token, 1 £ v < s.
The output local fuzzy variables for this case are changed. . . 112

The input local variables and output local variables for a tran-
sition ¢; of Case 3. Before t; is fired, pi, contains a token,
1 < u < k. Aftert, is fired, some pi; obtain a token,1 < v < s.
The output local fuzzy variables for this case are changed. . . 114

Some examples of MEO subsets for a mutually exclusive tran-
sition with four output places. ool 116

A fuzzy Petri net with one mutually exclusive transition {1.
After ¢, is fired, p; and ps or ps will receive the tokens based
on the local variable available in py and 788, 118

A scenario of robot-strut assembly in Figure 5.1. (a) shows
that the grasp position is above the strut and (b) shows the
gripper has missed the strut. The dotted circle displayed on
the table plane is a possible range the robot gripper may reach.122

A FPN representation for a grasp and move operation for the
robot. RS’ is a specified state the move operation is supposed
B0 TEACH. . i e e e e e e e e e e e e 123

A distribution for the membership grades of the position the
robot gripper reaches to grasp the strut. The darkened curve
is a 1-D membership function where the robot is assumed to
reach the strut. . . v v v v o v v e e e e e 123

A modified FPN which includes an error recovery sequence. If
the sensed value does not fall near the z” axis, an “ungrasp”
transition, for a robot to move to another temporary posi-
tion(not necessarily the original position) and then grasp the
strut again, is fired. Note that grasp* may not be the same as
grasp. The error recovery sequence is initiated by the fuzzy
reasoning rule in f; attached to tramsitiontz. 124

Fuzzy reasoning in a fuzzy Petri net for obtaining a token in
an output place mutually exclusively. - 126

. | ' il

6.1
6.2

6.3

6.4

6.5
6.6
6.7
6.8

6.9
6.10

6.11

7.1
7.2

7.3

A peg-cylinder assembly system. 135

The AND/OR net representation for the peg-cylinder assem-
bly system.o 135

The ordinary Petri net mapped from the AND/OR net in
Figure 6.2. R I AP 136

Conceptual diagram of the fuzzy membership function for the
global fuzzy variable ‘task completion’ in the peg-cylinder as-
sembly task. The horizontal axes are internal state variables
for ‘cutting’ and ‘lubrication’, and are not a complete state de-
scription. In practice, this membership function is executed

using a transition reasoning function. 142
Fuzzy Petri net representation for assembly transition. 143
Fuzzy Petri net representation for disassembly transition. . . 144
Fuzzy Petri net representation for IST transition. 144

The fuzzy Petri net mapped from the previous ordinary Petri

DEE. o v e e e e e e e e e e e e e e e e e 150
The updated AND/ORnet. 157
The updated ordinary Petri net. The names of soft objects

are followed by a symbol: “«¥”. 158
The fuzzy Petri net mapped from the updated ordinary Petri

o 7= 2 T AR 159
A peg-cylinder assembly system.. 168

Fuzzy Petri net representation for assembly operation. The
local fuzzy variables for O;,, O,, and O; are p;,, pi,, and pj,
respectively. The values of tokens in the places of O;, and O;,

are o and o in (a) and that in the place of O; is ¢/ in (b),
respectively. The weighting factor of ¢ty is WFe. 171

Fuzzy Petri net representation for disassembly operation. The
local fuzzy variables for O;, Oj,, and Oj, are p;, pj,, and pj;,
respectively. The values of tokens in the places of O;, and Oj,
are o/ and 0% in (b) and that in the place of O; is o' in (a),
respectively. The weighting factor of ty is WF,. 172

xi

|

7.4

7.5

7.6
7.7

7.8

7.9
7.10

711

7.12
7.13

7.14

Fuzzy Petri net representation for IST operation. The local
fuzzy variables for O, and O, are p, and p,, respectively. The
values of tokens in the places of O, and O, are ¢” and ¢7 in
(a) and (b), respectively. The weighting factor of ¢ is WF,. . 172

Fuzzy Petri net representation for ME transitions. In (2), The
global fuzzy variables and local fuzzy variables of O, are o,
and p.. In (b), the global fuzzy variable of Oy, is 64,. The
weighting factors of t,, tx,, ..., lx, are WF,, WF, ...,
WFy,, respectively. oo 174

Repeated trial error recovery structure. 177

Error recovery for the peg-cylinder assembly example. (a)
Planned sequence. (b) Insertion error. (c) Size error. 179

The subnets of the fuzzy Petri net of error recovery for the peg-
cylinder assembly example. (a) Planned sequence: t1t3tststslsts
tiot7ti2t13. (b) When an insertion error occurs, and t;5t;2 sub-
sequence cannot remedy the error, a global recovery sequence
t, will be used. (c) When a size error is found, a subsequence

tets will be used to remedy theerror. 181
Alternative local error recovery.o 182
An example of NDFPN with ME transitions. 187

An example for the executable fuzzy Petri net. (a) Petri
net example for peg-cylinder assembly system(without robot).
(b) The executable fuzzy Petri net(no sensors). (c) The net
with discrete sensor(global error recovery) and continuous sen-
sors(repeated trial error recovery). 196

An error recovery mechanism for ¢5 in Figure 7.1. 197

(a) The final configuration of the assembly of blocks A, B,
and C. (b) The AND/OR net representation of this assembly
task., . . . e e e e e e e e e e 199

The subnet of the Petri net representation of the example of
assembling A, Band C. 200

X1l

laid e, a2t

rn

7.15

7.16

The possible errors and the corresponding recovery procedures
for the task to assemble A, B, and C. (a) Put A. (b) Put
C. (c) Put B between A and C and fails. (d) Same as (c).
(e) Same as (c). (f) Remove B. (g) Remove C. (h) Put
C, possibly with distance adjusted. (i) Follow an alternative

sequence and put B.

The fuzzy Petri net representation for ABC assembly tasks.

Xiii

201

. 202

rmn
bt i1t

g [N
b e

|

(i I

rt

r

ACKNOWLEDGMENTS

[am deeply indebted to my thesis advisor, Professor Arthur Sanderson, for his
guidance, support, encouragement, and perspective throughout the course of this
research. Many of the key ideas in this thesis were stimulated in discussions with
him, and this work would have been impossible without his help.

I wish to express my gratitude to Professors Alan Desrochers, Frank DiCesare,
and Robert McNaughton for their valuable suggestions and advice, and for serving
on my doctoral committee.

The support from the NASA Center for Intelligent Robotic Systems for Space
Exploration (CIRSSE), Defense Logistics Agency, the Center for Manufacturing
Productivity and Technology Transfer (CMPTT), and the Electrical, Computer,

and Systems Engineering (ECSE) Department at Rensselaer is greatly appreciated,

“and particularly, CIRSSE and CMPTT for providing experimental robotic systems.

Computational facilities for this research have been provided by CIRSSE, the Im-
age Processing Laboratory (IPL), and the ECSE Department at Rensselaer. Many
thanks to all the friends and colleagues in CIRSSE, CMPTT, IPL, and the ECSE
Department for their help. In particular, I would like to thank CIRSSE for providing
the unique research environment.

I am also thankful to the members of the research groups I have been with
over the past years for their collaboration. Thanks to all the people who provided
useful comments on various portions of this work.

It is difficult to describe in words the constant love, support, and encourage-
ment from my parents, Huifeng Cao and Yafang Wu, and my brothers, Jianhua and
Qinghua, throughout the years. T am extremely grateful for their giving so much.
My special thanks go to my wife, Qing Chang, for her patience and support during

this research.

Xiv

I N0 - Iw " w W my

ABSTRACT

In a practical robotic system, it is important to represent and plan sequences of
operations and to be able to choose an efficient sequence from them for a specific
task. During the generation and execution of task plans, different kinds of uncer-
tainty may occur and erroneous states need to be handled to ensure the efficiency
and reliability of the system. In this thesis, we demonstrate a novel approach to task
representation, planning, and error recovery for robotic systems. Our approach to
task planning is based on an AND/OR net representation, which is then mapped to
a Petri net representation of all feasible geometric states and associated feasibility
criteria for net transitions. Task decomposition of robotic assembly plans based on
this representation is performed on the Petri net for robotic assembly tasks, and the
inheritance of properties of liveness, safeness, and reversibility at all levels of de-
composition are explored. This approach provides a framework for robust execution
of tasks through the properties of traceability and viability. Uncertainty in robotic
systems are modeled by local fuzzy variables, fuzzy marking variables, and global
fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties
and reasoning about uncertainty are investigated using fuzzy reasoning structures
built into the net. Two applications of fuzzy Petri nets, robot task sequence plan-
ning and sensor-based error recovery, are explored. In the first application, the
search space for feasible and complete task sequences with correct precedence rela-
tionships is reduced via the use of global fuzzy variables in reasoning about subgoals.
In the second application, sensory verification operations are modeled by mutually
exclusive transitions to reason about local and global fuzzy variables on-line and
automatically select a retry or an alternative error recovery sequence when errors
occur. Task sequencing and task execution with error recovery capability for one

and multiple soft components in robotic systems are investigated.

Xv

=32
=—

wu;w ' l\ \]u

u,"‘ o
ik b

" IV
i

| fre

r!

&L

nomon

CHAPTER 1
INTRODUCTION

1.1 Motivation

In a practical robotic system, it is important to represent and plan sequences
of operations and to be able to choose an efficient sequence from them for a spe-
cific task. The earliest planning methodologies emerged in the area of artificial
intelligence where domain-independent planning techniques were developed. In a
robotic system, a planning strategy oriented to the characteristics of the system
is often more effective than techniques derived from domain independent methods.
Conventional representation of a system model without constraints may result in a
huge search space for system states and task sequences. During the execution of a
planned task sequence, because of uncertainty associated with the robotic system,
exceptional or erroneous states are often met and thus the sequence may fail. Many
factors may lead to uncertainty, and different kinds of devices in the system, such as
manipulators, sensors, task-oriented mechanisms, human-robot interfaces, and the
working environment may bring incomplete, approximate, or random information.
Because planning is based on the assumption of expected system states, the model
of a system should also carry the capability to represent the fuzzy information and
provide a robust mechanism to detect and recover from an erroneous state.

Robots are used in many industrial applications including manufacturing, as-
sembly, hazardous environments, undersea or space exploration [31][59]. Feasibility,
efficiency, and reliability requirements are necessary for these robotic systems. In as-
sembly, material handling systems, or other manufacturing environments, we should

know the following information:

¢ The geometric descriptions of all components in the system and all feasible

[

I

£

'R

!

combinations of components which form groups during the execution of a task
by the system — A system state is defined to be the set of all current geometric
configurations of components or component groups at a given time point. A
system substate is defined to be a subset of a system state. Any component or

component group is an example of a system substate.

Each feasible operation which functions on a corresponding substate of this
system — These feasible operations are the feasible geometric relationships
among components and component groups in the system. For the current
system state, several operations may be enabled. After a feasible operation is
performed on the current state, a new state will be created and a new set of

enabled operations will be available.

An initial system state and a final system state — Sometimes, a set of im-
portant intermediate system states, i.e., subgoals, are indicated to search all
feasible sequences more efficiently. These states may be given by users so that
a smaller number of feasible states are generated during the search process.
Some constraints may be set by relating algorithms so that these subgoals are

followed automatically.

The feasibility assumptions and the descriptions of the working environment
— Some operations may be recoverable, i.e., these operations are reversible.
Some operations are not recoverable. To plan all intermediate points for a fea-
sible collision-avoidance path for a robot arm, we need to know the geometric

descriptions of obstacles in the working environment.

There are two methods to describe a robot task sequence. One method directly

i

uses an operations sequence, which is either a symbolic description or a formal
language description. In a symbolic description, a task sequence is equivalent to a

string of symbols and each symbol represents a corresponding operation, while in a

L K

o

l” ‘
N

S

{

"

{0

{

S

"

formal language description, the set of all feasible task sequences is a specific task
language. Another method is to use a sequence of partially or completely ordered
system states to represent a task sequence. Using this method, we may conceive the
state changes in a task sequence as well as monitor the completeness of an assigned
task. In this research, we combine these two methods together. Before we search
feasible sequences for a task, we first give an efficient and compact representation
for the system and all feasible operations. We propose a novel representation for the
system states as well as the transition criteria from system substates to substates.
This representation can be mapped to and directly use the theory of Petri nets[84,
88, 89] and its applications in modeling and control of manufacturing systems[2]. A
simulation tool[73, 74] is available to verify and simulate a sequence chosen from all
feasible sequences, before this sequence is practically implemented.

To handle the uncertainty in a robotic system and to represent the subgoals
for a gfoba.l task, we apply the knowledge of fuzzy sets to the representation of the
system. To generate a complete representation for the system and to efficiently plan
all feasible sequences, different kinds of uncertainty should be analyzed and classi-
fied. An approach to fuzzy reasoning embedded into this upgraded representation
is then used to compute enabled operations and reason about system states. This
fuzzy representation can also reduce the search space for feasible task sequences by

defining subgoals for crucial operations.

1.2 Objective of the Research

The objective of this research is to develop an approach to representation and
planning with uncertainty for a general robot assembly or material handling system.
In this research, error recovery with minimum effort in replanning and changing
a system model is also investigated with the representation of fuzzy information.

Representation and planning are based on the geometric descriptions of a robotic

'
i

y

A

g

il

ry e

system and its environment. The resulting correct sequences are the output of the
task planner. This planner will be connected to the path planner, trajectory gen-
erator, grasp planner, vision servo system, and other lower level planning systems.
The connections and the coordination among these planners are controlled and su-
pervised on-line by a coordination level. The Petri net representation provides a
good interface between the planning level and the coordination level.

The ability to represent and automatically find an alternative subsequence or
a recovery sequence is very important for the efficiency and robustness of a robotic
system. A robust planner should minimize the probability for replanning in case
an error occurs. We propose a generalized representation which incorporates the
geometric relationships and feasibility among objects or object groups, the subgoals
which are necessary for a correct operations sequence, different error recovery strate-
gies, and an efficient reasoning mechanism for uncertainty. Our fuzzy representation

offers the following advantages when error recovery is needed.

e It may be unnecessary for the system to re-analyze the system states such as
the current state and the initial state or final state, and it may be unnecessary

to replan a recovery sequence as well .

o Choosing an alternative sequence can maximize the use of task sequences
already generated. A local alternative recovery strategy makes the best use of
identical machines. A global error recovery strategy reduces the probability
for a system to return to the initial state, and increases the probability for the

system to recover from errors and reach the final state.

e For an object containing multiple components of which the properties may
change, when an operation on some of these components causes errors, we

need not discard other components while recovering to a previous state.

In this research, we also want to analyze the properties of a system using our

mwwm‘ lwww" '
- i

popm

o

|‘ "

representation. This becomes more important when we incorporate more lower level
devices and operations into the higher level representation. The case is similar when
fuzziness is introduced into the system model. Some of the important properties such

as liveness, safeness, and reversibility are discussed.

1.3 Approach

During the course of this research, we generate a high level representation and
then decompose it to lower levels. Task sequence planning and property analysis
are done on different levels of decomposition. Fuzzy sets are then introduced into
this representation, and fuzzy reasoning about uncertainty, planning for subgoals,

and sensor-based error recovery are investigated.

1.3.1 A High Level Representation

The scenarios we use in this research may also be applied to other kinds of
robotic systems. For example, in the scenario in which a robot moves a book on
table A to table B, all operations involved in this scenario can be described as
assembly, disassembly, or IST(Internal State Transition) operations, the three basic

operations in a generic assembly system which we will discuss. The representation

and planning methods for assembly systems may also be used for this example.

We define a subassembly in an assembly system as a feasible combination of
several components. We define an assembly as a special subassembly which is a
substate of the final state, and which does not appear in any intermediate state
or the initial state. We define an object in a robotic system as either a single
component, a subassembly, or an assembly. After investigating a generic robot
assembly system, we conclude that all possible operations appearing during the
time the system is in execution can be classified as three types of basic operations:

assembly operations, disassembly operations, and IST operations. Generally, for

B |

A,

(| B |

|

T

O |

[

gl |

il

] dt i

fwimey
ko b

an assembly operation, there is more than one object as the precondition, and one
object as the postcondition. For a disassembly operation, there is one object as the
precondition and more than one object as the postcondition. For an IST operation,
both precondition and postcondition contain one object.

We first check all components in the system and try to find all feasible com-
binations of components, and therefore all feasible objects are generated. This
checking process may be performed by the computer via a use-machine interacting
mode. A system geometric state representation will then be generated. Based on
this representation and all feasible geometric relations among objects, an AND/OR
net representation of the corresponding system will be generated. The generation
of this net is based on the feasibility assumption for each transition in the net. If
some transitions are shown to be infeasible in one direction, a directed AND/OR net
can be used to model the system. A mapping algorithm is shown to transform an
AND/OR net to an ordinary Petri net and a reachability tree of this net from the
initial state to the final state may be created based on an existing algorithm[84, 89].
A data structure for searching all possible sequences and the shortest sequence is
developed with AND/OR nets. 1-boundedness, safeness, liveness, and reversibility
have been proven to be guaranteed for the Petri net mapped from an AND/OR net.
The safeness and 1-boundedness of the Petri net mapped from a directed AND/OR
net are also proven to be guaranteed. The following research is based on the repre-

sentation using AND/OR nets and mapped Petri nets for the system.

1.3.2 Hierarchical Planning Decomposition

The Petri net mapped from an AND/OR net is called a Level 0 Petri Net(PNO).
Each assembly transition in this net can be decomposed to a motion command and
a grasp command. Each disassembly operation can be decomposed to an ungrasp

command and a motion command. An IST operation is more problem-oriented and

e

] |

N !

r

rp

e
I ek

(

L]
|

v

'

fin

we do not decompose it at this level. Therefore, some transitions in PNO may be
replaced by a subsequence of transitions and a Level I Petr: Net(PN1) is thus gen-
erated. The properties of PNO, 1-boundedness, safeness, liveness, and reversibility,
are shown to be inherited by PN1.

In PN1, we still have not included the lower level objects such as sensors.
Each transition in the net, which corresponds to a specific operation in the robotic
system, requires a plan to control the execution of subtasks. For example, before
the robot performs a motion operation, i.e., to move from an initial point to a final
point, a collision-avoidance path should be planned. Another example is that a
grasp operation needs a grasp plan, ie., we should choose a collision-free initial
grasp configuration and a final grasp configuration[70]. During the grasp operation,
the robot must be safe in both the initial grésp configuration and the final grasp
configuration. A collision-avoidance path is required for the robot to reach the final
configuration. Also, the grasping should be stable during the transfer motion. The
problem-oriented operation, IST operation, needs a corresponding plan. For motion
operations, two different kinds of motions may be classified and the corresponding
motions are different in the sense of methodologies of accomplishments. Therefore,
in the next level of decomposition, each motion command is decomposed to a free-
motion command and a fine-motion command. The properties of the resultant net
are also verified to be 1-bounded, safe, live, and reversible.

At the next step of decomposition, we add plans as preconditions for all tran-
sitions in the net and add sensors as preconditions for each sensor-based motion
transition. The resulting net still holds the properties which the upper level net
has. For each plan in the net, a strategy is investigated to develop some subnet for
planning to replace this plan, i.e., how plans are generated, which resources are used
for planning, how uncertainties are reduced before planning on-line, and whether

there is any resource conflict during the planning process and the execution process.

[

B

Uil

!
i

!
|

e 1

If we can represent resource conflicts for task planning in a lower level net, a shortest
sequence planned from the corresponding Petri net will be of the lowest probability

of error occurring.

1.3.3 Generalized Fuzzy Petri Nets

Because of the necessity to represent and reason about uncertainty within a
robotic system, we propose a definition of the generalized fuzzy Petri net with three
types of fuzzy variables. This definition is used for the following research in planning
under uncertainty and sensor-based error recovery for robotic systems. The theory
of generalized fuzzy Petri nets can also be applied to other kinds of applications
in artificial intelligence, knowledge based systems, and manufacturing. Fuzzy state
representation and reasoning rules with fuzzy sets are also incorporated with fuzzy

Petri nets. Property analysis for some basic cases of system models are performed.

1.3.4 Planning for Subgoals

A planning Petri net usually incorporates a great number of possible task
sequences. When all possible sequences are generated, it still takes a lot of time to
choose from them. Normally, these sequences guarantee the properties of feasibility
because of the feasibility constraints of the representation. However, some important
events or operations, which we will call as subgoals, should be included in each
correct sequence and should satisfy the correct precedence relationship. We define
a complete sequence as a sequence which contains all subgoals, i.e., all important
events. We may require that all possible sequences searched from the Petri net satisfy
the properties of feasibility, completeness, and have correct precedence relationships.
Based on this requirement, we propose a prime number marking algorithm to map
the ordinary Petri net we developed to a fuzzy Petri net with global fuzzy variables,

so that a strong numerical constraint is satisfied during the search for sequences.

|

gafll

-
[

A set of fuzzy reasoning rules are proposed to select an enabled transition and
to obtain the fuzzy values of tokens in the output places for this transition. We
notice that the properties of some objects may change. Generally, the properties of
an object can either be the size, such as radius, length, thickness, etc., or the shape,
and other physical properties, or the processing and machining characteristics, of a
component this object contains, or the parameters of the structure of this object,
such as the distance or the geometric relationships among different components
within this object.

Before the process for searching sequences starts, all possible fuzzy values are
generated and stored using the prime number marking algorithm. During the search
process, if a partial sequence meets a fuzzy value which is not in the possible fuzzy
value set, this partial sequence will be discarded and a theorem guarantees this
deletion will not lose any correct sequences. If not discarded, all partial sequences
continue their development until the complete sequences are generated. Through
the implementation of the theorems developed for this research, we found that the
set of correct sequences for an assembly system, where one or more components of
which the properties may change, is a very small portion of all possible sequences.
Therefore, both the storage for saving all these possible sequences and the selection
time for choosing the optimal or near-optimal sequence from the set of correct

sequences are reduced.

1.3.5 Alternative Error Recovery

During the execution of a selected sequence from the set of correct sequences,
some unexpected errors may occur and the sequence is therefore unexecutable. This
happens because all operatiohs in a planned task sequence are ezpected to be success-
ful and the execution of any operation in a sequence is dependent on the successes

of its previous operations. In particular, in a fuzzy Petri net representation of a

il

g

“II!‘I'

o

A

[TR
I

1

v

10

robotic system, all transitions which change the properties of objects are defined to
be key transitions. The marking for each transition is defined as a weighting factor.
All weighting factors for key transitions are expected values. Therefore, all fuzzy
values for the output places of certain key transitions are also expected values. If
at some time point, during the implementation of a task sequence, an error occurs,
this error will be propagated throughout the net to the final state and it may be
difficult to check where the error occurs. An error récovery strategy is especially
important for key transitions. If we detect possible errors just after key transitions,
an immediate mutually ezclusive recovery procedure may be followed.

Therefore, for a certain key transition, if we find the output of this transition is
beyond a certain range, we may either retry it, or use a local alternative subsequence,
or tecover back to a previous state or the initial state. All the previoué transitions
are refired after the corresponding component is replaced, or the parameters of the
structure of an object are changed. The selection among these three directions will
depend on the local fuzzy value of the object. To retain the original representation
of a fuzzy Petri net model for a system, we use a sensor-based error recovery strategy
for all key transitions. After a key transition is fired, a sensor verification procedure
is called to investigate the current state of an object. Then, depending on the sensed
value, the sequence will either retry in the local range, or continue its execution,
or automatically choose a local alternative subsequence to execute, or go back to
a previous state and follow a global alternative sequence to execute. There is a
limit on the number of retries of the local transition. We have developed a method
which automatically decreases the fuzzy value of an object when the sensed value
continues to stay in the range of retry. After a finite number of retries, if the fuzzy
value is still not correct as expected, an alternative local error recovery sequence

will be automatically followed.

o
Ul Wi

{

W”’ roor

rm

I

11

1.4 Contributions

‘The main contributions of this research are shown as follows:

We introduce an AND/OR net representation for robotic task sequence plan-
ning. An algorithm is developed to map this AND/OR net representation to
a Petri net. Property analysis is performed on the resulting Petri net. Data
structures for searching all possible operations sequences and the shortest se-
quence are proposed and implemented. A directed AND/OR net representa-

tion is also developed.

Algorithms are developed to decompose the high level representation of task
sequence planning for generic robotic systems. The inheritance of properties
between different levels of decompositions are investigated based on proven
theorems. Traceability and viability are shown with robust execution of tasks

using this approach.

We propose a generalized definition of a fuzzy Petri net. This fuzzy Petri net is
shown to represent and reason about uncertainty. Fuzzy state representation
and fuzzy reasoning rules are defined for the net. Three types of fuzzy variables
are discussed. Fuzzy sets are shown to be directly used with fuzzy Petri nets
and fuzzy computations are used for reasoning. Basic cases of property analysis

with fuzzy Petri nets are given.

Fuzzy Petri nets with global fuzzy variables are used for task sequence plan-
ning. Algorithms for assigning global fuzzy variables to fuzzy Petri nets are
proposed. Fuzzy transition rules for global fuzzy variables are given. Fuzzy
reasoning for global tasks are shown to reduce the search space for all feasible,

complete, and correctly ordered sequences.

) 3 [N TR e m oy na | I B g | 1 I A | i | S

t

()

Il
AR

12

o Fuzzy Petri nets with local and global fuzzy variables are used for sensor-based
error recovery for task sequences. Mutually exclusive transitions are proposed
for on-line selection for alternative enabled transitions. Deterministic and
nondeterministic fuzzy Petri nets are discussed. Theorems of error recovery

with fuzzy Petri nets and related algorithms are proposed.

1.5 Thesis Outline

In Chapter 2, we present a literature review of recent research in task planning,
assembly planning, planning under uncertainty, and Petri nets with fuzzy data. A
conclusion of this review relevant to our research is also given.

Chapter 3 and Chapter 4 discuss the methodology of representation for robotic
task sequences without the consideration of uncertainty. Section 3.2 deals with the
AND/OR representation for robotic systems. An algorithm is shown to generate
an AND/OR net from the descriptions of system geometric states. A mapping
algorithm for transforming an AND /OR net to a ?etri net is then given in Section
3.3. 1-boundedness, safeness, liveness, and reversibility of the resulting Petri net are
analyzed. In this section, a directed AND/OR net is also defined and the similar
properties are analyzed. In Section 3.4, we present a data structure for searching
all possible sequences and the shortest sequence from the AND/OR net. We give
an example of task sequence planning using AND/OR nets in Section 3.5.

Chapter 4 generalizes the results given in Chapter 3 and introduces a repre-
sentation of a generic robotic assembly system by decomposing the higher leve1 nets.
Section 4.2 gives the definitions for a generic assemnbly system. Section 4.3 reviews
the AND/OR net representation specially for assembly sequence planning. We then
discuss the decomposition algorithms for Level 1 and Level 2 Petri nets and analyze
the properties for resulting lower level nets in Sections 4.4 and 4.5. The conditions

for the inheritance of properties are discussed. In Section 4.6, a robotic assembly

i

nime

i |

il |

13

system modeled using the methods discussed above is simulated. Section 4.7 gives
a conclusion about the shortest sequence.

Chapter 5 is independent of the other chapters of the thesis, and develops a
novel definition of a fuzzy Petri net(FPN). The results represented in this chapter can
be used for other applications in artificial intelligence, knowledge-based systems, and
manufacturing. The presentation of the following two chapters are based on Chapter
5. Three types of fuzzy variables are proposed for different kinds of uncertainty
modeled with fuzzy Petri nets. State representation and reasoning rules in the FPN
are given in Sections 5.3 and 5.4, respectively. Property analysis is then given for
different conditions of the FPN in Section 3.5. Two examples of the FPN with
different kinds of variables are shown for task planning and robot sensing in the
following two sections.

Chapter 6 uses fuzzy Petri nets for robot task sequence planning. A detailed
discussion on state representation for task sequences is given in Section 6.2. We
show fuzzy sets for modeling system states in Section 6.3. An algorithm for assign-
ing global fuzzy variables is then proposed in Section 6.4. Some theorems about
using global fuzzy variables to search feasible sequences are also given. Section 6.5
generalizes the results in Section 6.4 and a fuzzy representation for a system with
more general characteristics is discussed. Simulation results, especially the compar-
ison of the complexity for searching sequences with ordinary Petri nets, are given in
Section 6.6.

Chapter 7 is an application of FPNs for sensor-based error recovery for robotic
task sequences. Some important definitions are given in Section 7.2. Section 7.3
gives the fuzzy transition rules for global fuzzy variables. In Section 7.4, execution
of plans on the fuzzy Petri net is discussed with the introduction of mutually exclu-

sive transitions. Deterministic and nondeterministic fuzzy Petri nets are discussed

N |

I | I]

l oy

14

regarding different characteristics of local fuzzy variables. The issue of error recov-
ery is presented in details in Section 7.5 for different cases. An algorithm for the
execution of a task sequence with sensory verification and error recovery is shown.
We prove the theorems regarding automatic error recovery. An algorithm for gener-
ating an executable FPN is presented in 7.6, followed by the examples using different
error recovery strategies in Section 7.7.

Chapter 8 summarizes the presentation of original contributions in this thesis.

Directions of future research based on the existing results are discussed.

L I DN D B

I R |

SRR (A (A

ﬂl!‘ﬂw"

P

I (R

CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

In this chapter, we briefly review the work relating to our research and in-
vestigate the relationships of these published results with our work. Our research
was originated from a project on the integration of an automated garment handling
system[9, 101, 102], which was supported by the Defense Logistics Agency. During
the research on modeling, planning, and software integration on this project, we con-
structed the AND/OR net modeling tool, and this methodology was then applied
to the NASA/CIRSSE space robotic assembly project. The resulting approach to
task decomposition, planning under uncertainty, fuzzy descriptions for objects, state
identification and verification, and error detection and recovery, is based on Petri
nets and fuzzy Petri nets. In this chapter, we review the literature on task planning
and assembly planning, and then show some previous results on the representation
of uncertainty for task planning. A concise review of the research efforts in Petri

nets using fuzzy data is also included.

2.2 Task Planning

Research in robotic planning is closely related to some corresponding areas in
artificial intelligence. Domain-independent planning methodologies have been de-
veloped which can generate sequences of actions to change the initial world model
and make it satisfy the final goal conditions. All possible actions in the sequences
belong to a feasible set of operators which cause changes in the state of the system.
The ability to reason about actions is a core problem to design a planning system.

Domain-independent planners yield planning techniques that are applicable in many

|

16

domains with some modifications and provide a general planning capability. A re-
view paper[43] describes the development of classical plan generation systems, the
important problems that have arisen in the design of planning systems, and some
solutions that have been developed in over 30 years of research in this area. Plan-
ning research has identified many issues in the fields of Al including representation,
reasoning, search, learning, sensation and perception, and distributed systems. A
survey on the Al approach to robot planning is given in [76].

Besides the property of generality for domain-independent planning, a gen-
eral planner should also provide representations and methods to include domain-
specific knowledge and heuristics. A number of planning systems corresponding to
this theme have been created, such as EMYCIN[77], NOAH[96], STRIPS[36, 37],
MOLGEN][103, 104], DEVISER[114], and SIPE[118]. These planners are designed
for a general problem solving environment. Most of the input knowledge takes the
form of predicate calculus formulas, and actions are given in the form of trans-
formation rules. Problem solving using these plahners requires the capability for
representing, retrieving, and manipulating sets of statements. Thus, extensive com-
puting power for searching and inference in order to solve a reasonably complex
real-world problem is needed for Al planning. Recent systems have overcome some
drawbacks of previous systems, however, current planning systems are still not ro-
bust and efficient enough to operate in complex robot workcells. Therefore, in robot
working environments, and particularly assembly workcells, domain-dependent plan-
ning methods, though possibly lacking generality, are often more effective since they
represent and reason about domain-related constraints directly.

A task planner transforms the task-level specifications into manipulator level
specifications. To carry out this transformation, the task planner must have a de-
scription of the objects being manipulated, the task environment, the robot carrying

out the task, the initial state of the environment, and the desired final goal. The

i

'

il

t

| il |

§] UM

1 W

(10

i

;i

17

output of the task planner would be a robot program to achieve the desired final
state when executed in the specified initial state. Robotic task planning may be
divided into three phases: modeling, task specification, and manipulator program
synthesis[70]. The modeling phase consists of the following information: geometric
description of all objects including robots in the task environment, physical de-
scriptions of all objects, kinematic descriptions of all linkages and descriptions of
characteristic of moving objects such as robots. Task specification corresponds to
sequences of states of the world model, where state is defined to be the configura-
tions of all objects in the system. This is the goal of domain-independent planning
research as well as domain-dependent planning. Our research shown in this the-
sis will focus on planning the sequences of operations which change the geometric
configurations of the system. The manipulation program synthesis stage is to map
task plans to the corresponding manipulation program which is composed of motion
commands, grasp commands, sensing commands, and commands for grasp planning,
motion planning, etc.

Generally, task planning in robotics requires precise models and knowledge
about mechanical and geometric specifications. Research in motion planning, grasp
planning, assembly planning, robot programming and teleprogramming, and sensor-
based manipulation has yielded important results which are closely tied to the plan-
ning problem. A portion of the research in task planning takes the form of robot
programming languages which allow the descriptions of robot tasks as a high-level
language such as AL[83], AML[108], AUTOPASS[66], and MAPLE[28]. Robot pro-
gramming languages can be classified as joint or actuator level languages, manipula-
tor or end-effector level languages, object-level languages, and task-level languages.
Task-level languages, in particular, often require planning capabilities. The progress
made in robot programming and task planning systems in the last twenty years and

the current research trends are discussed in [33].

[

i

'

i

o

-

18

2.3 Assembly Planning

One branch of robotics planning research is robot assembly planning. Most
published assembly planning contributions focus on the modeling of the assembly
process, i.e., describing the geometric configurations of the assembly which is con-
structed by single parts and the topological relations among the parts. Another
direction in the research on assembly takes into account the factor of uncertainty,
and therefore sensing operations, the alternative subsequence selection based on
sensory information, sensory verification for uncertain states, and checking for error
states as well as the generation of recovery sequences are combined into the planning
process. We will review the literature in this area in the next section of this chapter.

Bourjault’s[6] work on planning was based on an interactive algorithm using
questions about the mating of two parts or multiple parts. The information Bour-
jault used is a list of parts and a network of nodes(parts) and lines(liaisons), where
liaisons define the connection relationships among parts. Bourjault’s graph model is
different from Jentsch and Kaden’s[55] connection graph model, where three types
of touches between parts are expressed. All valid assembly sequences are gener-
ated algorithmically from a series of rules, which are derived from the answers to
the questions about matings among parts. However, Bourjault’s method requires
212(1 is the number of liaisons in the network) questions plus a number of subsequent
questions whose existence usually depends on answers to part of the former question
set. De Fazio and Whitney[29] modified the approach that Bourjault has developed
to generate assembly sequences based on the answers to the conditions of ﬁa.ison
establishments, i.e., the precedence relationship for assembly tasks. The question
set in their approach contains a smaller number of questions than that in Bourjault’s
set, and these questions usually obtain more involved answers. Thus, these ques-
tions may cause direct relationships equivalent to those in Bourjault’s, and valid

assembly sequences can be generated algorithmically directly from these equivalent

li

|)

Wi

L

o omm an

'y

Gi

N

|
i

[T

Cr

&
A

I

W' ne
NPT,

e

cwl [

19

relationships. Compared with Bourjault’s method, the improved method requires
2! questions that are answered in a precedence-logical form. Chen[25] transformed
the precedence relations for assembling parts into a pattern-matching problem and
the problem of generation of all possible assembly sequences is formulated as a state
constrained traveling salesman problem. The concept of a pattern matching algo-
rithm is to match liaisons or parts with one of the parts so that current last assembly
operation is obtained. In Chen’s work, a mechanism of precedence knowledge acqui-
sition is proposed which will reduce the time in obtaining such knowledge so that
the time for generating sequences is also reduced. This approach results in only /
questions to be answered.

All the above methods to generate possible assembly sequences are based on a
user-computer interactive mode. The user is requested to answer a lot of questions
about the precedence relationships among the liaisons of parts and the correctness
and the completeness[49] of the sequences of operations generated are not guaran-
teed. Homem de Mello and Sanderson[45, 47] used the AND/OR graph to represent
the decomposition process of an assembly based on the property of feasibility. There-
fore, the problem of finding all possrible assembly sequences is converted to find all
feasible disassembly operations for an assembly or a subassembly until all subassem-
blies or parts belong to the initial state. A compact representation of all feasible
assembly sequences is then obtained and its correctness and completeness is shown
in [49]. A complete comparison of AND/OR graph representation for assembly se-
quences with other representations and mappings among these representationrs are
discussed in [48]. Based on the work of AND/OR graph representation for assembly
sequences, Homem de Mello and Sanderson proposed a heuristic search algorithm
for the best sequence, which uses the criteria of maximizing the number of different

sequences and minimizing the execution time through parallel execution of assembly

tasks[50].

o3

=

Some researchers concentrated on the constraints among parts inside an as-
sembly to generate all feasible assembly sequences. Morris and Haynes[82] took into
account the geometric constraints during the design of a robot programming system.
Their understanding of geometric constraints is based on the degrees of freedom of
the parts being assembled. When parts are assembled, their degrees of freedom
are reduced. Besides the degrees of freedom constraints, Thomas and Torras{109]
also proposed two other types of constraints, i.e., shape-matching constraints and
non-intersection constraints. These constraints are used to infer assembly configu-
rations for a practical and efficient planner. Vijaykumar and Arbib[115] proposed
a strategy to decompose a sequence of operations and also satisfy the constraints
arising from task and object characteristics. The assembly operations and object
level descriptions are refined to be feature level descriptions using object symme-
tries, then spatial relationships, and at last commands to path planner and grasp
planner. This work was actually not proposing an explicit method for planning but
provided a connection between the high level planner, such as an assembly sequence
planner, and the lower level planners such as a path planner and a grasp planner.
As we will show later in Chapter 4, our decomposition for sequence plans is based
on the decomposition of the representation of plans, which incorporates all possible
sequences, rather than a specific task sequence. Therefore, during the decomposi-
tion process, any conflict or constraints of resources will emerge level by level, so
that the feasible sequences searched from the final representation of decomposition
are guaranteed.

Another example of using constraints for assembly is by Popplestone, Liu, and
Weiss[92]. They used group theory to describe the symmetries of components in a
computational form, so that a unified computational treatment of reasoning about
how parts with multiple contacting features fit together is provided. Using this

approach, when an object is assembled from several parts, the overall symmetry

L -

1T

it |

13

(' Y\

BRSLARE

i mw oE

"om
il

i

]

R

can be obtained from the parts whose symmetries are already known. Moreover, a
condition for features to mate is that they have the same symmetry group, so that
the geometric feasibility may be tested by intersecting the constraints corresponding

to each symmetry group of mating features.

2.4 Planning Under Uncertainty

Uncertainty may exist during planning generation and execution. Often uncer-
tainty arises from run-time errors in sensing or control. Another cause of uncertainty
may be one’s lack of knowledge of modeling a system or environment. Different ap-
proaches have been proposed to solve the uncertainty problems in different robotics
domains. Most efforts have been focused on compliant motion planning to deal with
uncertainty[97, 105, 117]. Fine motion strategies are also synthesized in the presence
of uncertainty[71]. Other related work is the characterization of manipulation tasks
in terms of randomization[34] and entropy[98]. A preimage backchaining approach
was used to address the problem of planning motion strategies in robot control and
sensing in the presence of uncertainty[60].

When the robot planner generates a task sequence and forwards it to the
robot program synthesizer to output an executable program, the robot manipulator
will then implement this program to reach a desired final goal and also satisfy
some constraints. However, some factors of uncertainty might show up during the
execution of plans, and if no procedure is existing to verify, compute, and solve these
uncertainties, the accumulations of the errors resulting from these uncertainties may
cause a failure, and the sequence of tasks will not be finished. Brooks[7] described
uncertainty for plan execution from three possible sources. The first source is the
positional and repeatability uncertainty of the manipulator, which might be due
to either stochastic or long-term drift effects. The latter case could be solved by

calibration of the manipulator before each round of execution. The second source is

il |

I e mem wmy ma » 1l |

[

NS A B |

| A

14

L R

22

the objects to be manipulated, since each object or part has its toleranced dimensions
during manufacturing. When a grasp planner generates a planning program, the
numerical representations of parts play an important role, such as lengths, diameters,
and angles. When the system consists of more parts, the problem of the possible
errors for the representations may become more serious. Thirdly, if we assume
the parts were not in the work environment originally, then the initial uncertainties
should be taken into account for the introduction of these parts into the environment
by human hands or a mechanical device.

In our research, we propose an additional type of uncertainty, the uncertainty
of the accomplishment of subgoals. A checking and verification procedure which may
use sensing operations for the quality of the fulfillment of subgoals is investigated
and an algorithm is proposed in Chapter 7. Using this method, we reduce the
propagation of errors for subgoals to a range of tolerance so that the correctness of
the final goal is guaranteed.

In Kamel and Kaufmann's[56) work, two more factors are considered for un-
certainty, one is inaccurate or error-prone sensing information, and another is the
dynamic working environment, which is outside the control of the manipulator. For
the latter case, we could also use sensory verification procedures as we use in the
verification for the fulfillment of subgoals. For inaccurate sensory data, because
we would map it into a fuzzy value during the firing of a fuzzy reasoning rule, the
tolerance of this mapping would reduce the possible inaccuracy of sensory operators.

In Brook’s work[7], an explicit block of plan checker was discussed and this
block was separate from the block of robot planner. Plan checker was introduced
to infer the effects of actions and the propagation of errors. Brook’s major effort
is to make a program that can automatically determine whether a plan generated
by a robot planner is feasible, and when sensing information is obtained by the

robot controller, the plan checker must have the ability to check and update plans

23

for computations which the robot controller will make. Comparing with Brook’s
approach, our model of error detection and recovery is combined with the task
planner. Procedures for dealing with uncertainties and errors do not influence the
representation structure for planning, and also the recovery procedure would be
automatically called or an alternative sequence followed.

An example of a robot assembly planning system which handles uncertainties
is Spar[51]. There is a three-level planning hierarchy for Spar, i.e., the operational
level to handle high level operations, the geometric level to couple with geometric
constraints, and the uncertainty-reduction level to deal with uncertainties and errors.
In the lowest level, Spar uses its knowledge about the uncertainty in the world
description to asses the possibility of run-time errors. To achieve this goal, Spar
adds sensors to the plan to reduce uncertainties, and if uncertainty is too large,
precompiled recovery plans would be added. Compared with Spar, the methodology
for our research to decompose a representation of planning considers all possible
operations in assembly, i.e., free motion, fine motion, grasp, and ungrasp.

To handle the uncertainties in execution of plans, we should find a strategy
to monitor the uncertainties and call an error recovery procedure to remedy any
exceptional cases whenever uncertainties are too large to go on the execution of the
normal sequences. A number of approaches to error recovery for assembly workcells
have been discussed in the literature. A repair sequence generation algorithm was
proposed for planning disassembly and repair using the AND /OR graph[46, 99]. In
the approach described in [69], the task execution control function of a workeell
controller is decomposed into three sub-functions which are performed by three
software modules: failure detection, failure diagnosis and failure recovery. Using
Petri nets to model the controller in an automated manufacturing system, four
basic error recovery planning mechanisms to augment the controller are discussed in

[35]: input conditioning, alternate path, backward error recovery, and forward error

bt i i e Tumm O gm | | B | N |

v Ty i B |

e

ot '

&

24

recovery. Some important properties of the augmented controller are guaranteed to
be preserved[123]. Other recent work on error recovery([32] has focussed on the local

physical and geometric constraints related to manipulation tasks.

2.5 Petri Nets with Fuzzy Data

Since C. A. Petri presented his original idea[90], where he formulated the basis
for a theory of communication between asynchronous components of a concurrent
system, a rich body of knowledge concerning both the theoretical and applied do-
mains of Petri nets has been developed. Petri nets have been widely used in modeling
and analyzing flexible manufacturing systems(2, 3, 78, 85, 116, 125], discrete event
systems[26, 58], computer systems[44, 75, 80, 94}, knowledge-based systems[8][52],
robot assembly systems[121], as well as other kinds of engineering applications.
This is an efficient abstract and formal information flow model. The Petri net is
characterized by its flexibility and efficiency in modeling and analysis of complex
discrete-event systems. For an extensive survey and overview on Petri nets, refer
to [84, 88, 89]. In a recent article[2], an overview of the Petri net approach to
the modeling, analysis, design, and control of automated manufacturing systems is
presented.

The formal definition for Petri nets and related properties as well as the math-
ematical operations on Petri nets are defined in [2, 84, 88, 89].

There are some examples of using Petri nets to model robotic or assembly
processes so that a sequence of operations is generated based on the Petri net model.
In [120], a plan generating tool for robotic applications using Predicate/Transition
nets[39, 40] is described. This tool is based on modeling STRIPS-like rules by
Pr/T nets and then the T-invariant method of the Pr/T nets is utilized to generate
robot plans. However, this approach still stays in domain-independent formalism

and the applications are limited to blocks world. Zhang[121] described an approach

(I

oo o
£

]m o

25

to representing simple specific assembly actions using a Petri net and presented an
algorithm for automatic planning of an assembly robot based on the Petri net model
of the assembly. There are several shortcomings in this approach and therefore this
methodology is difficult to generalize. First, the process of constructing a Petri
net model for the assembly is a bottleneck for the algorithm because no systematic
method is proposed to derive topological relations among the parts. Second, the
creation of places and transitions for the Petri net model is problem-specific so
that it could not be generalized to other applications. Third, the algorithm only
addresses the problem of finding one feasible sequence. The approach is not shown
to be correct or complete.

Some types of Petri nets with fuzzy data have been proposed to handle prob-
lems in different applications. Looney[68] modified the usual Petri net to allow fuzzy
rule-based reasoning by propositional logic. The resulting net is considered as a new
type of neural network where the transitions serve as the neurons, and the places
serve as the conditions, so that fuzzy reasoning for knowledge could be performed.
Conditions may be conjuncted and disjuncted in a natural way to allow the firing of
the neurons. Aside from the firing methods in usual Petri net models, in Looney’s
Petri net which implements logic implication, when a neuron is fired, the original
token would remain at its precondition and copies would be sent out to all its post-
conditions. One difference in this fuzzy net model from the usual fuzzy rule-based
reasoning is in the representation of certainty or degree-of-belief values of the fuzzy
rules. Chen, Ke, and Chang[24], however, eliminate this difference. In their work, a
structured representation of production rules by fuzzy Petri nets, and a systematic
procedure for supporting fuzzy reasoning, is proposed. Using this approach, each
place represents a proposition. An algorithm is proposed to reason about the degree

of truth of proposition d;, if a degree of truth of another proposition d; is given in

.
i

K

| T

&l

=i
==
o

(-

26

the net. If no solution is obtained, then these two propositions have no antecedent-
consequence relationship. Similar work was done by Garg, Ahson, and Gupta([38]
where a fuzzy Petri net was used to represent knowledge and an algorithm was pro-
posed for checking the consistency of a fuzzy knowledge base via a set of reduction
rules that preserve the properties of the FPN.

There are also other similar approaches in extending Petri nets in an impre-
cise or fuzzy sense. Valette, Cardoso, and Dubois[112] introduced uncertainty and
imprecision within Petri net based models for application to monitoring of manu-
facturing systems. This approach is based on the association of a fuzzy value with
the time delay for execution of a transition, which results in attaching a fuzzy date
to the transition. The marking of Petri nets with objects and their interpretation
were also introduced in their work[23]. Based on these assumptions, the relations
between Petri nets and logic, the necessity to use Petri nets with objects to repre-
sent uncertainty, and the implementation of Petri nets as rules, were discussed in
[113]. Tn Tsuji and Matsumoto’s work[110], an extended Petri net was proposed to
model the vague conditions, and the boundedness, liveness, and reachability for this
model of fuzzy inference engines were analyzed. Another kind of approach modeled
production systems where a numerical Petri net model was proposed(67] and the

correctness, consistency, and completeness of the knowledge base were verified.

2.6 Conclusion of Literature Reviews

In this chapter, we review work on task planning, assembly planning, planning
under uncertainty, and Petri nets with fuzzy data. To author’s best knowledge, there
is no previous work that used fuzzy logic to describe constraints and uncertainty in
task planning and no work that applies ordinary or fuzzy Petri nets to task sequence
planning, task decomposition, and evaluation and analysis of robotic systems. Prior

work has emphasized that uncertainty is very important during both planning and

s

27

L execution. Using uncertainty for planning, we add sensors to check and verify the
uncertain state of the system, while using uncertainty in execution, we are required

to call error recovery procedures to remedy exceptional cases should errors occur.

|

Kl

CHAPTER 3
AND/OR NET REPRESENTATION FOR ROBOTIC TASK

SEQUENCE PLANNING

This chapter describes an approach to task sequence planning for a generalized
robotic workcell. Given the descriptions of the objects in this system and all fea-
sible geometric relationships among these objects, an AND/OR net represents the
relationships of all feasible geometric states and associated feasibility criteria for net
transitions. This AND/OR net is mapped into a Petri net which incorporates all
feasible sequences of operations. The resulting Petri net is shown to be 1-bounded
and have guaranteed properties of liveness, safeness, and reversibility. Sequences are
found from the AND/OR net or the reachability tree of the Petri net. Feasibility
criteria for net transitions may be used to generate an extended Petri net repre-
sentation of lower level command sequences. The resulting Petri net representation

may be used for on-line scheduling and control of the system.

3.1 Introduction

Most applications of robotic systems require the generation of a task plan
which specifies the sequence of operations which must be carried out in order to
achieve a stated goal. The generation of this task plan has been approached from
several different perspectives, but in general some set of operations, or actions, and
associated pre-conditions and post-conditions are defined. The representation of
actions and conditions(states) defines the universe of the planning task. Exploring
the feasible sequences of actions which satisfy pre- and post-conditions defines a
search problem which must be solved to identify a feasible, and perhaps optimal,
sequence.

Research on domain-independent planners[36, 37, 77, 96, 118] explored generic

28

(.

|

Wik

Ml

I

IL

Ml

I

1N g1

ol | -

'w e

29

representation and search strategies which yield feasible sequences. Much of this
work has focused on state representation by propositional logic(well-formed for-
mulae). Single-level and hierarchical representation and search have played an
important role. Strictly sequential search(linear planning) versus non-sequential
search(non-linear planning) have also been extensively described.

In robotic systems, a propositional logic state representation often does not
capture the geometric relations required to fully describe the system state. Ap-
proaches to task planning and task-level languages for robotic systems have therefore
concentrated on model-based descriptions of objects, configurations, and geometries
of parts and mechanisms to describe systems states. Such a geometric representa-
tion results in more complex computational requirements for geometric reasoning
about feasibility of operations, and therefore an inqreased difficulty to search for
feasible sequences.

In previous work[47, 48, 49, 50], we have introduced the AND/OR graph repre-
sentation of assembly plans. The AND/OR graph provides a compact representation
of state relations for the specific domain of assembly. In assembly tasks, state re-
lations are governed by a strict recursive decomposition relation described by the
AND/OR tree. The resulting data structure is compact and efficient to search.
In practice, the complete AND/OR graph may not be generated when the search
process is bounded at execution-time.

In this chapter, we describe an extension of the AND/OR graph from a ‘tree’
to a ‘net’ structure. The resulting AND/OR net is a more general representation of
geometric configurations which lends itself to a compact state description of a more
general robotic system. The AND/OR net representation is described in detail in
the next section.

The AND/OR net is introduced as a compact representation of feasible sys-

tem states and state transitions, and incorporates all feasible operations sequences

|
it

i i

il

€. &

ni ¢

gl

1
ly

g

o

o

30

for any given task. As a means to analyze and evaluate these possible operations
sequences, we introduce the AND/OR net to Petri net mapping. Use of this alter-
nate Petri net representation allows us to characterize the resulting system in terms
of well-known properties of liveness, 1-boundedness, safeness, and reversibility of
discrete-event systems. The resulting Petri net also provides a means to construct

a task-level controller for execution of the final operations sequence.

3.2 AND/OR Net Representation

The representation of assembly plans in our previous work is based on an

AND/OR graph[47, 48, 49, 50]. AND/OR graphs have AND-arcs connecting one
initial node to k terminal nodes. The basic definition of an AND/OR graph is:

Definition 3.1 An AND/OR graph is a pair of sets (V, H) in which V'is a finite
set, and H is a subset of the Cartesian product V x ([I(V) — {0}), where (V) is
the set of all subsets of V.

The elements of V are called nodes, and the elements of H are called AND-arcs.
For an AND-arc (), A), the node A is the initial node, and the nodes in A are the
terminal nodes. The AND-arc (), A) is incident from) and is incident to the nodes
in A. The AND-arc (), A) is said to connect node A to the nodes in A which implies
that the condition of node A can simultaneously cause the results of nodes in A.

In this section, we introduce the AND/OR net representation as a means to
represent generic geometric relations and constraints among objects and devices
in a robotic system. Given a complete geometric description of objects and object
relations, the AND/OR graph described above is extended to represent more general
relationships among objects as system substates. The AND/OR net is defined as

follows:

L]
Whaia, wnalt

TR

LL

r

1,.\\

31

Definition 3.2 Pair-match set T: Given two finite sets &; = {a),a2,.-.,8m}, 2

= {by,ba, ..., bn},

[(E1,%) = U U{{anb H

For example, if £; = {1,2}, T2 = {3,{4,5}}, T(£1,%2) = {{1,3},{1,{4,5}},
{2,3},{2,{4,5}}}.

Definition 3.3 An AND/OR net is a three-tuple (S, A, N) where S is a finite set
of states {s1,52,..-,5¢}, A S T(S,TI(S) - ({IUULZ {{s:3]), N S T(S,S), and A
NN =0, where [](S) is the set of all subsets of S.

The elements of S are called nodes, the elements of A are called AND-arcs,
and the elements of N are called IST-arcs, where IST refers to “Internal State
Transition”. The AND-arc {),®} is said to connect node) to the nodes in ¥,
¥ C S. The IST-arc {1, A} is said to connect node \; to node ;. Both AND-
arcs and IST-arcs are undirected. We introduce. IST-arcs because some objects
or subassemblies may change the shape, size, or have relative motions inside the
combination of components. These changes cannot be described by a disassembly
or assembly operation because the set of components are the same before and after
the operation. Therefore, an AND/OR net incorporates three types of operations:
assembly and disassembly operations, which are modeled by AND-arcs, and internal
state cha.nge operations, which are modeled by IST-arcs. The representation of
AND/OR nets can generalize the robotic planning problem from the assembly to
moving objects, material handling, or other task-oriented problem.

AND/OR nets and AND/OR graphs both have AND-arcs. At a given time, an
operation can be disjunctively chosen from all feasible operations. They can be used
for representing parallelism. Howé;ier, there are several differences between these
two representations. First, in an AND/OR graph, there is normally a start node

and some concluding or terminal nodes, while the nodes in an AND/OR net, are not

32

ordered in this manner. Each node could represeﬁt one substate of an initial state
or one substate of a final state. Therefore, an AND/OR net is a more generalized
representation of a robotic system. Second, the arcs in an AND/OR graph are
directed while the arcs in an AND/OR net are bidirectional, which means both
directions may be feasible when we show the information flow or transition flow.
An AND/OR graph contains no cycles, while an AND/OR net has no assumption
of acyclicity. Third, in an AND/OR graph, the initial state can be represented by
a single start node, while, in contrast, the initial state of an AND/OR net may
occupy several nodes in the net. Fourth, there is no arc in an AND/OR graph
which corresponds to the IST-arc in an AND/OR net. Because each arc in an
AND/OR net can be considered bidirectional, the AND/OR graph representation
can be thought of as a special case of the AND/OR net.

3.2.1 AND/OR Net Algorithm

Consider a system which contains M geometric substates, including, objects
of one component, i.e., S}, S}, ..., S}, subassemblies of two components, i.e.,
SE, Sz, ..., S2, ..., and assemblies of n components, S7, S7, ..., Sy, where
pr+p2+ ...+ pn = M. The algorithm for obtaining the AND/OR net from the

geometric state representation is shown below:

Algorithm 3.1 Obtaining the AND/OR net from a system geometric state repre-

sentation.

Input: system geometric state representation.

Output: AND/OR net Ny = (S, A, N).

1. Initialize S = @. For each geometric state S} in the system geometric state

representation, S = SJ{S}};

i

EEIl W WED D w0

&l

Ei g &0 o m

o ‘nu .
o

l:n I

33

2 Fori=nto?2
Forj=1top;
Consider S},

2.1 if there is an Si(u # j) which contains the same components as S:, and there
is no IST between S} and S, add an arc between Si and S3(IST) in N;

2.2 Find all feasible S,fl‘ and Sf;(kl < 1,k; < 1), where Sfx‘ and S'f: have no common
components, and S,fl‘ together with S,f; contain the same components as those

in ¢, add an AND-arc between Si and Si7, S in A.

Using this algorithm, we observe that each subassembly of order n may be
further decomposed in 2"~! — 1 ways. Only those decompositions which are geo-
metrically feasible, i.e., we can find the corresponding set of disassemblies in the
geometric state representation, and show that a collision-free path is available, are
included in the AND/OR net. In addition, objects with internal state changes are
indicated by dark links in the AND/OR net.

Therefore, the nodes in the AND/OR net correspond to all objects, which may
be subassemblies and assemblies, appearing in the geometric states representation.
The AND-arcs represent the feasible decompositions from subassemblies(assemblies)
to a corresponding set of subassemblies. The IST-arcs represent the feasible internal
state transitions from a subassembly(assembly) to another subassembly(assembly).
These two subassemblies(assemblies) are listed in the same column in the geometric
states representation and contain the same number of original components.

An example of an AND/OR net definition is shown in Figures 3.1 to 3.3. Figure
3.1 shows a robot which transfers an object on the floor to the surface of a table.
The initial state and final state are presented in Figure 3.1. All feasible geometric
relationships among these objects are shown in the geometric state representation
in Figure 3.2. For simplicity in this example, the floor is not considered a defined

object.

34

?
-
=
-
./_'- ﬁ =
! i _
Table Robot Solid
@ =
Solid
-
| E = -
Table Robot —
-
(b) -
Figure 3.1: Example of a moving task for a robot. (a) Initial state. (b) Final state. -
o
:

35

s gy -
b

ey i—
i

THREE OBJECTS

TWO OBJECTS

ONE OBJECT

Figure 3.2: System geometric state representation.

36

SR

ST

RST

Figure 3.3: The AND/OR net representation for the example.

The maximum number of steps of generating the AND/OR net is CT + C} +
...+ Cp = 2" — 1, where n is the number of components in the system and C7
indicates the combinations of n. Within each step, we may obtain more than one
configuration of single components or contacting objects. The resulting AND/OR
net state representation is shown in Figure 3.3 a.n& is based on the feasible decom-
positions of subassemblies of order n to subassemblies of order no more than n — 1.
In the next sections, we will describe the mapping of this AND/OR net to a Petri
net.

Methods for extracting all possible sequences from the AND/ OR graph or
AND/OR tree representation of the system will in general not work for the AND/OR
net. First, cycles may appear in an AND/OR net, and the methods developed in
AND/OR graphs for automatically searching task sequences are no longer Qalid.
However, the AND/OR net often possesses properties which simplify the represen-
tation and search process. Under many common assumptions, an AND/OR net
possesses the special characteristic of reversibility. In addition, we may consider
AND/OR graphs or AND/OR trees as special cases of AND/OR nets. An algo-

rithm for searching in the AND/OR net is described in Section 3.4.

1 & §E/ =Ei = €. W wow]

H

ml .

| S

37

3.3 AND/OR Net to Petri Net Mapping

Some definitions and notations of Petri nets are introduced below:

Definition 3.4 A Petri net structure, N, is a four-tuple, N = (P,T,a,3). P =
{p1,p2,...,Pa} is a finite set of places, n > 0; T = {t1,t2,..-,tm} is a finite set of
transitions, m > 0; PN T=0. a C {P x T} and B C {T x P} are sets of directed

arcs.

Definition 3.5 Marking u: Marking p of Petri net N is a mapping from set P to
set A = {0, 1, 2, ..., L} which is a finite set, Le.,

p:P = A,

where p sets tokens to every place in N. p; = p{p;) € A indicates the number of

tokens in place p;. p can be in the form:

= (1, B2y e ey fn) s pi = pu(p:), pi€P.

Definition 3.6 Marked Petri net M: A Petri net structure N containing a marking

p is @ marked Petri net which is the following five-tuple,
M= (PT,a,B,u).

Sometimes, for the sake of simplicity, we refer to a marked Petri net as a Petri

net, as shown later in this chapter.

Definition 3.7 Petri net graph: The Petri net graph consists of directed arcs and
two kinds of nodes. In the graph, circle nodes and bar nodes represent places and
transitions respectively. The directed arc, which links the circle node and the bar
node, indicates the relation between place and transition. Marking g is indicated

by solid dots in circle nodes.

38

One important property of a Petri net is the representation of serial and con-
current events and resource constraints. For this research, we use the Generalized
Stochastic Petri Nets(GSPN) software[73, 74] to represent the system and carry out

simulations as well as verify the task sequences.

3.3.1 AND/OR Net to Petri Net Mapping Algorithm

For an undirected arc {A;,A;} € N in an AND/OR net, the mapping to

elements in a Petri net is defined as a function F;, where

Fi({A, A2}) = (A, 1) (1, A2) UMz, £2) U (2, M).

For an AND-arc {A,%} € A in an AND/OR net, the mapping to elements in

a Petri net is defined as a function F,, where

k k
Fo({M\ ¥} = ()‘,tl)U U(tly/\i)U g(/\i,tz) U(tz,/\), A; € 9.

The algorithm for converting an AND/OR net to the corresponding Petri net

is shown as follows:

Algorithm 3.2 Mapping from an AND/OR net to a Petri net.

Input: AND/OR net Ny = (S, A, N).
Output: Petri net Np = (P, T, q,).

1. initiglize P=T=a=8=0, np=nr=0;
2. for each set n; € N,n; = {n;;,n:y}
begin
add 2 transitions tn, 41, tapsa,
T =TW{tars1,tnr42};
nt =nr +2;

check whether n;y,n;, is in P,

[/

i

e

wi omw om o= oN e e

ol

L

T

C.

I

39

if ny, not in P, P = PU{ni}, np=np+1;
if nig not in P, P = PU{niz}, np =np+1;
a = aU{(rir, tapr), (Riz; tnrs2) b5
B = BU{(tar+1,Mi2), (tars2 i)}
end
3. for each set a; € A, a; = {ar, Y.}
begin
add 2 transitions taps1, taps2,
T = TU{tnr+1; tars2}s
nr =nr +2;
for every e; € {ax}Uvs and {e;}NP =0,
P =PU{ej}, np=np+1;
a = aUU;{(ar tar+1)s (&), tars2)}, for all ej;
B = BUU;{(tar+1, €5); (tnr+2,01)}, for all e

end

A Petri net representation for the example in Figure 3.1 is shown in Figure
3.4. The initial marking of one token in places S, R, and T represents the initial
state, i.e., there are one robot, one table, and one object available and they are
geometrically independent. The important properties of the resulting Petri net may

be shown as follows:
Theorem 3.1 The Petri net mapped from an AND/OR net is safe.

Proof: Because the Petri net is mapped from an AND/OR net, we clarify the
meanings of AND-arc and IST-arc. The IST-arc in the AND/OR net corresponds
to the internal geometric state change inside an object. All possible assemblies of
n objects, and all possible subassemblies of m objects are special cases of objects.

The AND-arc in the AND/OR net corresponds to combining the geometric states

40

Figure 3.4: The Petri net representation for the example.

of two or more objects.

Suppose Np = (P,T,a,f3) with initial marking z. Choose any place p; € P;
#' € R(Np, pt) represents a marking which can be reached from p. If we could verify
that 4'(p;) <1 for all possible ' and ¢, then the proof is completed.

pi might connect with neighboring places in two ways(Figure 3.5).

Case 1: Corresponding to the internal state change of geometric substates of
a component or a related set of components in the system(Figure 3.5(a)).

Suppose p'(p;) > 2. For the sake of simplicity, we assume u'(p;) = 2. There
should exist a u” € R(Np,u) and y' € R(Np,y") such that 4'(p;) = 2 and p"(p;) =
1, and 4’ is immediately reached from u”. Therefore, at the time of marking u”,
#'(pi) = u"(p;) = 1, p; and p; are neighboring places in the Petri net. Because
the Petri net is mapped from the AND/OR net and this case concerns the internal
geometric state change, we conclude that at the time of marking u”, the two feasible
internal states of a single component or a related set of components could appear
simultaneously. The contradiction is thus obtained.

Case 2: Corresponding to the assembly and disassembly relationship among

one subassembly or assembly with a set of other subassemblies or single components

i

e

L

| U

Wil WED) @

i Wil W n

m

g

——-

41

e
=]

(a) One neighbor (b) Two or more neighbors

Figure 3.5: The connectedness with p; and its neighboring places.

in the system.

(i) p; is as shown in Figure 3.5(b).

Also suppose p'(p;) = 2. There should exist a p" such that u'(pi) = 2 and
u"(p;) = 1. Therefore, at the time of u”, u"(p) = u"(pjy) = 1"(pz) = -~ = #"(Ps.)
=1, 4"(p;,), -+ #"(Pi.)> - - -+ u"(pj,) are combining neighboring geometric states in
the AND/OR net, 1 < u < k. We conclude that at the same time of u”, the two
possible combining geometric states, which include exactly the same objects, could
appear simultaneously. A contradiction is thus obtained again.

(ii) p; is in the place of p;, as shown in Figure 3.5(b).

Follow the same procedure as in case 1. We could conclude that at the time
of u”, two possible combining geometric states, which contain at least one common
object, would appear simultaneously. A contradiction is obtained.

Therefore, the safeness of the Petri net mapped from an AND/OR net is

assured.

Q.E.D. O
Corollary 3.1 The Petri net mapped from an AND/OR net is 1-bounded.

This corollary is directly derived from Theorem 3.1 because the number of

42

tokens in any place cannot exceed 1.
Theorem 3.2 The Petri net mapped from an AND/OR net is live.

Proof: Based on the properties of generating the AND/OR net from the system
geometric state representation, we know that each IST-arc and AND-arc is feasible,
and each transition in the Petri net is feasible if we have tokens in the corresponding
incident places. If we can verify that no matter what marking u’ has been reached
from the initial marking y, it is possible to ultimately fire any transition of the net
through some further firing sequence, then the proof is obtained.

Because at any time, the system contains all components and each component
is in a geometric substate. To get tokens for all incident places for any transition
simultaneously, using the property that no common components are existing in these
places at the same time, we can first follow a sequence to get all geometric substates
for single components. | Then, we follow two or more distinct sequences to obtain
the tokens in the incident places of the selected transition, respectively. Therefore,

the liveness of the Petri net mapped from an AND/OR net is proven.
Q.E.D. O

Theorem 3.3 The Petri net mapped from an AND/OR net is reversible.

Proof: Asshown in the proof of Theorem 3.2, the Petri net is a set of loops according
to the mapping definitions. If we define each pair of transitions in the net as ¢; and
t;, when p’ is reached from u following t,t5...t,, we can resume the marking of p
from 4’ following t,t,_, ...t]. Therefore, the initial marking is reachable from all
reachable markings. The Petri net is thus reversible.

Q.E.D. O

The live Petri net guarantees a deadlock-free system. The boundedness prop-

erty ensures that the capacity is not exceeded. And the reversibility implies that the

Ll ®W El m s W T g W@

. |

1K .

i

|

R

"

mo

43

system can re-initialize itself, and is important for the automatic recovery from er-
rors and failures. Therefore, if a robotic assembly or handling system is represented
as an AND/OR net, it is not only convenient for the system to generate task plans,
but also the controller will supervise and coordinate the system more efficiently.
This mapped Petri net does not satisfy the property of conservation because

of the geometric characteristics of the system.

3.3.2 Directed AND/OR Net and the Properties of the Mapped Petri
Net

In some practical cases, each operation represented in an AND/OR net is
not reversible. For example, the product generated by some physical assembly
operation cannot be disassembled following the same strategy as assembly. We
define a directed AND/OR net which incorporates both undirected arcs and directed

arcs.

Definition 3.8 A directed AND/OR net is a five-tuple (S, 4, A’, N, N’) where §
is a finite set of states {s1,52,...,5:}, 4 CT(S,TI(S) - ({9} UL {{SD)),

4 C$x ([I(S) - (0} - U (1) U (19 - (0} - U ({si}]) x S,

NCT(55), NNCSxS, and ANA =), ANN =0, NAN' =0, ANN' = 0,
ANN' =0, and A/ N = 0, where [](S) is the set of all subsets of S.

A directed AND/OR net may be mapped to a Petri net, by adding one tran-
sition instead of two transitions for directed arcs, with the same direction of that in
the directed AND/OR net, for all directed arcs in the net. Therefore, in the map-
ping algorithm, we add a checking command to see whether the current arc in the
AND/OR net is directed or undirected, before adding the corresponding transitions

and arcs in the Petri net.

44

Some properties are not guaranteed in the Petri net mapped from a directed
AND/OR net. Liveness and reversibility are not guaranteed because of the existence
of some directed arcs. To be more accurate, based on the definition of different
levels of liveness[27, 61], the resulting Petri net is strictly L1 — Live, because each
transition in the net can be fired at least once in some firing sequence from the
initial marking 4, and some transitions cannot be fired any finite number of times
in any firing sequence. The properties of safeness and thus 1-boundedness of the

directed Petri net are guaranteed.

Lemma 3.1 If a Petri net is safe, when one or more transitions are deleted, the

remaining net still retains the property of safeness.

Proof: We assume the original net is N and the modified net is N’. Suppose we
can find a sequence of transition #,¢,... t, in N’ such that one place receives more
than one token. Therefore, following the same sequence in N, we can é.lso obtain
the same result. This leads to the contradiction with the property of safeness of
N and thus no such sequence exists. We conclude that N’ retains the property of

safeness.

Q.E.D.O

Lemma 3.2 If a Petri net is bounded, when one or more transitions are deleted,

the remaining net still retains the property of boundedness.

Proof: The proof strategy is the same as in Lemma 3.1. If we suppose there exists a
sequence to destroy the property of boundedness in N’, we will reach a contradiction
to the known assumption. Therefore, the property of boundedness is inherited in

N’ which is generated through deleting some transitions in V.

Q.E.D. O

Theorem 3.4 The Petri net mapped from a directed AND/OR net is safe.

& i

R 0 W W E

il

B

i

| JIEIER]

&I

g
1

Ny

1

45

Proof: Using Lemma 3.1, we consider the Petri net mapped from a directed
AND/OR net as generated through deleting some transitions in a complete Petri
net which is mapped from an ordinary AND/OR net. Because this complete Petri
net is safe, the directed Petri net is also safe.

Q.E.D. O
Corollary 3.2 The Petri net mapped from a directed AND/OR net is [-bounded.

This corollary is directly derived from Theorem 3.4 because the number of

tokens in any place cannot exceed 1.

3.4 Data Structure for Searching Sequences in the AND/OR Net

To search feasible sequences from the AND/OR net representation of a robotic
system, an efficient data structure is required. Two possible requirements may be
proposed for practical implementation situations: one is the problem of searching all
possible operations sequences for the given initial state and final state, and another
is the problem of searching the optimal sequence under certain evaluation criteria
such as cost, number of steps, or flexibility. The complexity of the first problem is
much greater than that of the second one.

The search in an AND/OR graph is a recursive procedure which is guaranteed
to terminate under the assumption of acyclicity. To search all possible solution
graphs from the start node to a set of terminal nodes in an AND/OR graph, a
breadth-first search algorithm could be defined. To find the optimal solution graph
with minimum cost, a heuristic search procedure, AO" algorithm([87], was used to
speed up the search. The AO" algorithm consists of two major operations, a top-
down graph expanding procedure and a bottom-up cost revision procedure. The
search algorithm for AND/OR graphs could not be used to search AND/OR nets

because of their different topologies and properties.

46

3.4.1 Searching All Possible Sequ'ences

It may not be possible to represent the state of a robotic system by a single
node in the AND/OR net. For example, the initial state S; may consist of a set of &
objects, {O1,02,...,0k}, where O; represents either a component, a subassembly,
or an assembly. To find all possible operations sequences, which consist of AND-arcs
and IST-arcs, from the initial object set to the final object set, we first transform
each distributed node set in an AND/OR net to a distinct node in a corresponding
state graph. Our algorithm is mainly divided into two steps:

1. Create a directed state graph, where each node in the graph represents a
feasible system state, and each directed arc points from one node to another and is
marked with a label of a feasible operation.

2. Generate all possible paths from the node which corresponds to the initial
state to the node which represents the final state.

Because the complete algorithm is quite complicated, we only informally dis-
cuss some important ideas related to the data struéture inside the algorithm.

To create the state graph, we have a linear sequential structure £ which may
be implemented by an array. Each node in £ represents a system state. Two
pointers, Pt;, which is to indicate the intersecting position of the states which have
been processed and not processed, and Pt,, which is to mark the index of the last
inserted state, afe used. Initially, £ consists of only S;. If Pt; # Pt,, and the
current state is not the final state Sy, the set of objects representing this state will
be used to search from the feasible-operation-base to find all enabled operafions.
Correspondingly, each new state reached by an enabled operation will be compared
with every existing state in £ to decide whether it should be added to £. In either
case, a directed arc marked with the label of this operation will be added to £. For
each node in £, the number of nodes it points at will also be recorded. Eventually,

because of the finite number of components in the system, £ will stop developing

[

il

Nl W m

bl

I

A

A

il

K

o

[N]

r

47

and all feasible states are incorporated in this graph. The resulting graph is a finite
automaton with one final state.

The complexity of the generation of the state graph depends on the practical
implementation of a robotic system because the comparison of each existing state
with a new state is quite expensive. Also, the same state may be created many
times and at each time the comparison should be performed. Searching in the
feasible-operation-base also adds to the complexity. A binary search strategy or
a heap structure[l] cannot be used here to raise the efficiency of search because
otherwise the arcs in the state graph would be frequently modified and thus costly.
The complexity is Q(n? + mn), where n is the number of feasible states in the final
graph and m is the number of feasible operations.

The next step is to find all sequences from L. For this task, we use a data
structure A to store the intermediate states which are being processed, and these
states point to the corresponding partial sequences which are being developed. This
data structure could be either a queue or a stack, which corresponds to the breadth-
first and the depth-first search, respectively. The states in A could also be ordered,
which corresponds to a heuristic search to find the smallest cost path. We will
discuss it using another more efficient strategy in the next subsection.

Suppose the enabled operations in the state graph for the initial state Sy is
tn, t, .., and t7,. In the first step, we push the corresponding child states of Sy,
Sty Sty -+ S1,, into A, and make them point to the partial sequences, tr,, tr, - -
and t;,. The following iterations will process and delete a state in one end of A. Its
child states are compared with the final state and the results control whether to add
the corresponding enabled operations to the partial sequences. The procedure for
developing a partial sequence continues until (1) a duplicate transition is found for a
partial sequence, in this case, the partial sequence will be discarded, or (2) the final

state is reached, in this case, the complete sequence will be output or stored. This

48

algorithm is guaranteed to stop(A becomes empty) because the feasible operations
and the feasible states are finite. All complete sequences are stored in a set and could
be evaluated or selected after the searching process stops. The complexity for this
type of search and the number of all possible sequences depends on (1) the size and
the configuration of the state graph, (2) the cost of comparing a currently enabled
operation with each operation existing in the corresponding partial sequence. The
storage for the scripts of all possible sequences is also not predictable and therefore
may be large. During the procedure of generating all possible sequences, if we add
some constraints such as the maximum number of operations in a sequence, the
maximum number of sequences we want to generate, the maximum cost for each
sequence, and so on, a reduced set of possible sequences is obtained and search time

and space required may be reduced.

3.4.2 Searching the Shortest Sequence

In many cases, we wish to search the shortest sequence directly from the

AND/OR net representation rather than to choose from a set of all possible se-

quences. When there is a weight or cost function for each feasible operation defined

a priori, the shortest operations sequence is defined as the sequence from the initial
state to the final state with the lowest cumulative cost. When there are no costs
defined for the operations, the shortest sequence is considered as the sequence with
the fewest number of steps.

We use a methodology similar to Dijkstra[30] for searching the shortest path
from a weighted graph which is based on a greedy strategy. Given two arbitrary
nodes, v and w, in the graph, Dijkstra’s algorithm is to find the shortest path from v
to w in ©(n?) time, where n is the number of vertices in the graph. This algorithm
is based on a strategy of generating a search tree which always chooses an edge,

such that the cost from the node on one end of the edge to the starting node is the

| (RAT 10T RO ¥ LN Wil & mR omn Sl W s Mmoo om0 om0owm

il

wv‘

49

smallest. Eventually the search tree will reach w. If we directly use this algorithm
to search the shortest sequence, the complexity will be Q(n? + mn) + O(n?) =
Q(n? + mn), where n is the number of all feasible states and m is the number of all
feasible operations.

In our algorithm, we look for a search tree at the same time as the state
graph is created. Suppose the partial graph we are developing is G, and the partial
search tree is 7. Initially, G = T = 0. When the search starts, G=T= {5}
The algorithm for searching the shortest path from the AND/OR net is informally
shown as follows. The notations are: (1) Scurr represents the current state which is
being processed and Scurr; is one of the child state of Seurr, (2) ¢(S;) is the minimum
cost of path from S; to Sj. (3) are(S;,, S;,) represents the directed arc connecting
from S, to S, (4) w(arc(.)) is the cost of the corresponding arc.

Seurr = S1; c08t(Seurr) = 05
while Securr # Sr(final state) do
(1) for each child state, Seurr;, Of Scurr
if Scurr; is in G and ¢(Seurr;) > & Seurr) + wlare(Seurr, Scurry))
delete the arc connecting Sy, and a node in G and
add arc(Seurry Seurr;) to G;
if Scurr; 18 DOt in G
add Scurr, and arc(Scurr, Seurr;) In G,
(2)find a ¢’ € G — T which has a cost of min;;(cost(t;) + w(arc(ti, g;))
from Sy toit, t; € T, 9, € G—T; 7
Put it into T and mark it as Scyrr.

This algorithm will stop if the final state is met and the path could be traced
from Sg back to S;. And the shortest cost from the initial state to all other states
in T will be found in order of increasing cost. The proof of the correctness of our

algorithm is quite straightforward, and we omit the proof here. The complexity is

30

O(n'* + n'm) where n' is the number of feasible states which will be developed for
G, n’ < n, and m is the number of feasible sequences. This complexity is clearly
less than that discussed above.

Using these algorithms for searching, we can generate a state graph for the
AND/OR net example shown in Figure 3.3, and obtain the task sequences required.
In this case, only one possible sequence is available. This sequence could be mapped
to a sequence of transitions in the mapped Petri net. The firings of this sequence
of transitions and the corresponding sequence of markings are shown in Figure 3.6.

Note that the sequence of places in markings are: R, S, T, SR, ST, and RST,

respectively.

3.4.3 Searching Sequences in Resulting Petri Nets

We could also search sequences from the Petri net which is mapped from
the AND/OR net. In this case, the task planning problem maps to a reachability
problem in the Petri net, which is a basic Petri netranalysis problem[89]. From the
task sequence planning point of view, we are not only interested in whether a final
state, uy, can be reached from the initial state, y;, we also require the sequence used
to reach the final state. In such a reachability tree generated from a Petri net, the
number of leaves in the tree is the number of all possible task sequences. The depth
of the tree is the length of the sequence. The length of the shortest path from the
root to a leaf is the number of operations in the optimal sequence in the sense of
the number of steps. To represent a task sequence from the reachability tree, we
can either show a sequence of transitions, or a sequence of system states. The Petri
net can be used to simulate and verify the sequences selected.

Compared with the search algorithm for all possible operations sequences dis-
cussed for AND/OR nets, the time for creating a state graph and a reachability tree

is the same, while the representation size of the reachability tree is much greater

.wy el
il

LIt Sl EE om0 s s omaw

. U b il & W

RST 1
4
(a) Transition fireable: t1 (b) Transition fireable: 2, 3
Marking: 111000 ‘Marking: 001100
Operation: None Operation: Robot grasps solid

4
(c) Transition fireable: t4, t5 (d) Transition fireable: t6
Marking: 000001 Marking: 100010
Operation: Robot reaches table Operation: Robot leaves table

Figure 3.6: The sequence of markings and corresponding operations.

3l

32

because of many duplicate nodes. However, the feasible operations sequences can
be directly found from the reachability tree. Similar to the discussions on AND/OR

nets, it is also not economical to find an optimal sequence using the method of the

reachability tree.

3.5 Example of Task Sequence planning Using AND/OR nets

Another example of a task sequence plan is provided by the problem of a
robot, iWo tables, and a book shown in Figure 3.7. An initial state and a desired
final state are mapped to their geometric descriptions. All feasible geometric states
for one object, two objects and three objects are shown in Figure 3.8. For this
problem, we assume the maximum size of the robot gripper is not large enough for
the robot to grasp the book when the book is fully lying on the table. It is thus
necessary to first move the book to the edge of the table and try to pick up the
book from one side. Two cases for the connectedness of the book and the table
are considered. For the connectedness of three ob jécts, the cases are more complex
because of the relative geometric relations between the book and table. When the
book is on the edge of the table and the robot is touching one side of the book, we
ignore the place of the robot relative to the table, i.e., (T;BR)4 and (T,BR)4 may
include two kinds of geometric relations.

From the system geometric states and Algorithm 3.1, we obtain the AND/OR
net representation for the task(Figure 3.9). For simplicity of the figure, the net
is shown as separate subnets, but because of the common nodes in each subnet,
it is really a connected net. We map this AND/OR net to the Petri net(Figure
3.10) following Algorithm 3.2. The description for each operation could be deduced
from the Petri net and the corresponding system geometric states descriptions. By
searching the AND/OR net directly or the reachability tree of this Petri net, we

obtain all possible task sequences. The optimal(shortest) sequence in this case is

1Y

i

wo
m

Ui = il ®m G u Wil o oK

i
il

il

Em-m L]
Wbk

lmm o
L IO

r

r

Book

L | _

—
jm

Table 1 Table2 *
Robot
(@)
Book
- 1]
Table1 © U Taple2 U
Robot
®)

Figure 3.7: A robot moves a book from table 1 to table 2. (a) Initial state. (b)
Final state.

ONE OBJECT TWO OBJECTS THREE OBJECTS
BT), (T,BR), B R
T
1
[] T H R
T B
a — (T.BR) T
“ “ BD, g Ko
1 R B
Tl
U 1 U
(TBR), B R
B U Tz!:]
(BT
C— 3 2 B ,
W’) (LBR), p R
% T,
(LBR), R
B
R — (BR)
— L

Figure 3.8: System geometric states representation for moving book.

54

iy

i

i

mui e

Lo e ‘
L i ul T [| Al] [T]

L p

i
il

L

ol

l LR
Ll

LAl
i

[““I”
| P

®

(BT),

O

®

Q

Q,

(TBR),

(T,BR)

o\

(BR)

(BT,),

(T,BR),

(BT,
(T,BR),
(BR)

(BT,),

(T,BR)

(BT,

(D—

Y@

35

(BT

1)2

L

(T,BR),

(T,BR),

(T,BR),

(BT,

)2

Figure 3.9: The AND/OR net representation for moving book.

56

shown as follows:

1. ti0: the robot moves towards table 1 and touches the book which is
lying on the surface of table 1.

2. ti4: the robot forces the book on table 1 to move to the edge of the
table.

3. ti: fhe robot leaves the book and i:able 1.

4. te: the robot reaches table 1 again and grasps the book towards the
edge of table 1.

5. t4: the robot which has grasped the béok leaves table 1.

6. t15: the robot moves towards table 2 and makes the book touch the
surface and lie on the edge of table 2.

7. t17: the robot leaves the book and table 2.

8. t24: the robot touches the book again but the orientation of the
gripper has already been changed.

9. t35: the robot forces the book to move to the center of the surface of
table 2.

10. ¢3;: the robot leaves the book and table 2 and then goes back to its

original place.

This is the only shortest-path solution which could be found for this problem.

This optimal task sequence is illustrated in Figure 3.11. This sequence is reversible.

3.6 Conclusions

The AND/OR net is introduced as a tool for representation and reasoning
about geometric constraints in a robotic workcell system. A method for mapping
the AND/OR net to a Petri net is provided. Some properties of this Petri net are
also verified. A directed Petri net is discussed to include more general cases for

modeling a system. We could obtain all possible task sequences by searching from

L ITFI

i S0l Em A B0 & ®En

LI (e

Wil

&l |

LU
ki b

| Wobi

L1 L1
"

o
it

®,
p(T1BR) O p(T1BR)2

T1 P(BR)
1 W t t
$/ / e -76) LI Nbo Va1 _
(<] a \ %
p(T1BR)3 pCT1BR)

l/ [1a rzz\‘—ﬁ 23 s
t19 \k
HTZBR)L P(T2BR)2 p(T2BR)3 P(TZBR)

Figure 3.10: The Petri net representation for moving book.

58

Figure 3.11: A feasible sequence from the initial state to the final state.

I

Wi [N INA [T (Y BiE w0 om wmr

Kl

R M i oLl 1

lnuv -
i t: e

Equ n
Wi e 1

l‘

Ill Im .

the state graph resulting from the AND/OR net, or constructing the reachability
tree from the Petri net. The optimal task sequence could be directly searched from
the AND/OR net without necessarily creating the complete state space. This off-line
planning system has been implemented. The ideas presented here can be applied to
robotic planning problems in manufacturing and non-manufacturing domains.

The selection and evaluation of all feasible task sequences, is an important
dimension of this work and depends on factors such as time, cost, flexibility, or least-
error-possibility. Another extension of this work involves selection and execution of
parallel operations when a chosen sequence is implemented, so that the time is
reduced and resources are used efficiently. The work discussed in this chapter also

leads to approaches to error detection and recovery.

, CHAPTER 4
TASK DECOMPOSITION AND ANALYSIS OF ROBOTIC
ASSEMBLY TASK PLANS USING PETRI NETS

This chapter describes an approach to robotic task sequence planning which decom-
poses tasks into operations sequences for argernrericrz robotic workcell. The approach
provides a framework for robust execution of tasks through properties of: traceability
— implicit mapping of operations té task representation, and viability — retaining
multiple paths for execution. Given the descriptions of the objects in this system
and all feasible geometric configurations and relationships among these objects and
combinations of objects, an AND/ OR net which describes the relationships of all
feasible geometric states and associated feasibility criteria for net transitions is gen-
erated. This AND/OR net is mapped into a Petri net which incorporates all feasible
sequences of high level operations. The resulting Petri net is then decomposed in a
stepwise manner into lower level Petri nets of which each transition can be directly
implemented by control commands or command sequences based on devices and
objects in the system, or, by lower level planning transitions corresponding to path
planning, grasp planning, fine motion planning, etc. All possible task sequences are
found using an efficient algorithm which first generates all feasible system states. A
shortest sequence may be chosen from the lowest level decomposition and is guar-
anteed to be the shortest sequence output of the hierarchical planning system to
efficiently implement the desired tasks. The property analysis for different levels of
decomposition is also presented, and the inheritance of properties between levels is

defined.

60

I

WL

B

il il

willl

| o & w o] € N0 omaoow

]

C

.
b e

(

61

4.1 Introduction

Assembly sequence planning generates sequences of mating operations among
objects which will be assembled, including both the original single components and
the subassemblies. The AND/OR graph[47] is an efficient way to represent all fea-
sible assembly sequences at this level of task description[48, 49, 100]. For a robotic
assembly system, operations which incorporate active devices such as robots or sen-
sors require a more complete description of feasible tasks and a plan for the execution
sequences of these devices. The resulting plans facilitate real time implementation
and coordination between high level planning and lower level control. In this chapter
we describe a decomposition ;)f high level task sequences using a Petri net repre-
sentation which facilitates the Snalysis of robustness properties for the resulting
plans.

An assembly task may be represented by the feasible geometric states of ob-
jects and the transitions among those states, and the assembly sequence planner
selects feasible sequences of these states and transitions. When an assembly task
sequence is selected, each task must be further decomposed to generate a lower level
operations sequence. Such a decomposition raises fundamental issues regarding the
properties of the resulting operations sequence. New deadlock situations, conflicts
among resources, and error states may arise in the decomposed sequence which were
not present at the higher level. In this chapter, vwe describe an approach to assembly
plan decomposition which retains two important properties: (1) traceability — each
action is traceable to its role in the higher level plan, and (2) viability — several
paths of actions may be retained and chosen on line. These properties are specifi-
cally intended to support robust ezecution of the task, and overcome difficulties in
resource conflict and error recovery.

In this chapter, we use an AND/OR net[10, 11, 13, 16] to represent task

level sequences and then follow a top-down hierarchical decomposition procedure

62

based on Petri nets to develop a more comprehensive robotic task representation.
We search among feasible sequences from the final net using an efficient search
algorithm. This representation aﬁd decomposition procedure is described in the
following sections. Section 4.2 describes the decomposition of operations for a task.
Section 4.3 summarizes the AND/OR net representation for high level tasks, as well
as the mapping from an AND/OR net to a Petri net. Section 4.4 describes the
decomposition of commands or transitions frc:)m: diffelfent assembly or disassembly
operations. In section 4.5, the net is further decomﬁoséd based on types of device
motion and sensors. Section 4.6 discusses the simulation results for decompositions
and sequences searched from the nets, and Section 4.7 discusses the conclusions of

this work and directions for futu;'e work.

4.2 Representation of a Robotic Assembly System

Consider a generic assembly system composed of n components, C;, Cy, ...,

Chn. Three possible types of components are defined as follows:

Definition 4.1 Active components: An active component has controllable motions

in a defined workspace. It may move other components when combined into a

subassembly or assembly.

Definition 4.2 Passive movable components: A type of passive component. A
passive movable component is defined to be a component which is movable if and

only if it is operated on by some active component.

Definition 4.3 Passive static components: A type of passive component. A passive

static component is fixed in a certain position, and therefore cannot move even if it

is combined with some active component.

Usually, the position and orientation of passive static components are known

prior to the execution of the system, while the position and orientation of passive

'
i

i

NI IR T € o w &l | W ni o R W s .

I

| S

o
[

I !
PR

! -

|M m

63

movable components may be unknown before the system starts and thus may contain
uncertainties. For example, a block on a table is a passive movable component, but
the table is considered as a passive static component. The sets of active, passive
movable, and passive static components are independent and their union is the set
of components in the system.

A component group, {Ci,,Ci;,...,Cin}, in which all components are in con-
tact with each other is called a subassembly, and specifically, a group of components,
which is a desired configuration in the final state and only appears in the final state,
is called an assembly. We define an object in the system as either a component, or a
subassembly, or an assembly. At any given time, the system has some objects and
we define the system assembly state at that time as the set of these objects.

| An operation may affect this system assembly state by destroying some objects
and creating some new objects. We assume when an operation is taking place, at
most two objects may be deleted and at most two new objects may be created. In
addition, at the time when objects are being deleted or created, exactly one object
deleted or created may contain one active component. For example, a robot R
is defined to be an active component. After the robot R holding a component A
contacts another component B, two objects, RA(R holds A) and B are deleted and
one new object, RAB, is created. The resulting object, RAB, is called an active
object, if it contains one active component and only passive movable components,
or contains internal states which may be modified.

The internal state of a component or subassembly is defined in terms of its
properties. A property of a single component or a subassembly may change, or,
the parameters corresponding to the interrelationships of some components or sub-
assemblies within this object may change. For example, if an object O consists of
two components, C; and C2, and the distance between C, and C}; is extended, we

say that the parameter of O, in this case, the distance, is changed and a new or

0 upnn
[

' o i

[P
.

lu sl

64

modified object O’ thus takes the place of the old object O.

Based on these characteristics of feasible objects, three types of basic opera-
tions are defined: assembly, disassembly, and Internal State Transition(IST) oper-
ations. We define the precondition of an operation as the objects being destroyed,
and the postcondition of this operation as the new objects being created. For an
assembly operation, the precondition is two objects, O;, and O;,, and the postcondi-
tion is one object, O;. For a disassembly operation, the precondition is one object,

0;, and the postcondition is two objects, O;, and Oy;. For an IST operation, the

_precondition is one object, 0;, and the postcondition is another object, O;.

In Section 4.3, we will introduce an AND/OR net[10, 11, 13, 16] which rep-
resents these operations and states. In this representation, if the precondition or
postcondition of an operation has more than one object, an AND arc is used to
connect the operation with these objects to show the necessary coexistence of these
objects. The OR relationship for choosing a feasible operation from all enabled
operations is represented by several AND arcs or IST arcs from the same set of
nodes. The decomposition of assembly tasks is achieved using a predefined library of
primitive operations. While these operations may vary in detail for different imple-
mentations, they capture the fundamental requirements for assembly task execution.
Section 4.4 describes this decomposition in more detail.

Each assembly operation is decomposed into a sequence of move and combine.
To form an assembly configuration by an active component, a motion operation is
necessary to reach the corresponding object. After motion is performed, a mating
operation combines the objects by establishing a new contact state. The mating
operations include insert, screw, grasp, or put operations.

Similarly, a disassembly operation can be decomposed into a sequence of sep-
arate and move. The move operation here is in a different direction from that in an

assembly operation. The unmate operation separates objects by destroying contact

relations. The mate and unmate operations are both problem-dependent and their
implementation depends on the descriptions of tasks.

There are different types of IST operations, and many are problem specific.
In this chapter, we consider only move-with-contact as an example of an IST op-
eration. Move-with-contact changes the internal configuration of a subassembly by
sliding objects along contacting surfaces. The property which changes is the relative
position of parts in the configuration. Sliding an object along a table is an example
of this type of IST operation.

A move operation is further decomposed into a free-move suboperation and a
fine-move suboperation. A free-motion assumes a wide range of workspace, relative
high speed, and no tightly constraining obstacles. A fine-motion moves in a small,
constrained workspace and moves with a relative slow speed and may often involve
compliance or contact motions. A free-motion makes an active object roughly reach
a goal and a fine-motion makes the active object ezactly reach a goal. The prece-
dence of free-motion and fine-motion in motion sub;)perations for an assembly and a
disassembly operation are different. For motion in an assembly operation, the free-
motion precedes the fine-motion, while in a disassembly operation, the fine-motion
precedes the free-motion.

Sensors are necessary to assess the current state of a system during execution,
and a viable planning strategy must incorporate on-line sensor-based decisions. Sen-
sors are used to restore uncertainties on-line and instantiate lower-level plans. In
our work, we construct plans with sensors for (1) state verification, (2) state identi-
fication, and (3) sensor-based control. Sensory state verification and identification
are used to determine system states and parameters and determine the subsequent
task sequence. Sensors are also used in lower-level sensor-based operations which in-

corporate dynamic sensory feedback to achieve adaptive modes of on-line operation.

Wb omEE s m l

wie

Kiid N m l |

§ | JHI |

Bl

Bl

"o
i,

|"m P
i i o

66

In related work{12, 14, 20, 21], we have shown the uigé' of a fuzzy Petri net represen-
tation to embed fuzzy reasoning rules and incorporate sensory observations into the
on-line task sequence. In all of these cases, the sensor becomes a resource constraint
on the sequence of operations in the system, and the resulting Petri net planning
tools provide a convenient means to represent and reason about these resources.

For most operations, a motion plan is required before the operation is executed.
For sensor-based motion, a plan may specify a mode of sensor-based motion and
constraints, but not an explicit path. In our task representation, the motion plan
is also viewed as a resource and modeled as such in the Petri net representation.
The existence of the plan is therefore an explicit precondition for the execution of
motion.

To sequence the generation of plans as well as the task sequences, a planning
for planning problem occurs, i.e., when to generate a plan for a certain operation
and how to schedule the generations of all plans in the system. One approach is to
generate the plan right before the execution of the operation so that the uncertainty
of the dynamic working environment can be minimized. To reduce the conflict of
resources in the system, we search a shortest sequence from the final Petri net. This

sequence will guarantee a smallest number of resource conflicts.

4.3 AND/OR Net and Petri Net Representation for High Level Tasks

As discussed in the last section, an assembly operation combines several single
components or component groups to a new component group. A disassembly opera-
tion decomposes a component group into a set of single components and component
groups. An IST operation makes an internal state change for a single component or
a component group. The following discussions are based on the representation and

sequencing of these operations.

67

B -~ Ceiling Camera(C1)

T trut Sub bly(82S83
WO-§ ubassembly() Robot(R) Holder(H)

pe \
Arm Camera(C2) :

/ /
— =0 Strut(S1)
I [

Table(T)

Figure 4.1: A strut-triangle assembly system.

4.3.1 AND/OR Net Representation for Assembly Sequences

Geometric states are used to describe the states for all components and feasible
component groups in the system. Each assembly, disassembly, or Internal State
Transition operation can be considered as reaching from one system geometric state

to another geometric state. The system geometric state was defined in [11, 12]:

Definition 4.4 System geometric state: A set of objects which constitute the sys-
tem including single components, subassemblies, or assemblies. Each object has
geometric substate, which represents the corresponding geometric configuration or

relations among the components of the object.

Fér a strﬁt-triangle assembly system example shown in Figure 4.1, the corre-
sponding system geometric states table is shown in Table 1.

Note that each geometric configuration may either represent a contacting re-
lationship of objects with internal state parameters, or a fixed relationship among

objects. The fixed relationship is a pre-specified relationship among related objects

Wi |

|

I TR R Wi mi

IU I

tm\ winy
sk 114

KLA
[

l\lm\

(I

r "

l‘ Vg (\ I

Single Objects

R(robot)
H(holder)

Si(strut 1)
S2(strut 2)
S3(strut 3)
T(table)
C1(ceiling camera)

C2(arm camera)

Combined Objects
RS1

S1H
RS1H
S2S3T
$152S83T

RS1S283T

TABLE 1
SYSTEM GEOMETRIC STATES

Type Object External States
active position/orientation
passive static position/orientation

passive movable position/orientation
passive movable position/orientation

passive movable position/orientation

passive static position/orientation
passive static position/orientation
passive static position/orientation
Type Object External States
active

passive static position/orientation
active

passive movable

passive movable

joint positions

active < grasp point

68

Internal States

joint positions(kinematics)

Internal States
joint positions
grasp point

< holder slot #
fine position in holder
joint positions
grasp point

position/orientation of
S2S3 on table

position/orientation of
$152S3 on table

position/orientation of
RS15253 on table

69

and the non-fixed relationship may be unknown or uncertain. The subassembly of
an active component and a passive movable component is rigid, for example, the
robot holding a strut, but the grasping position is an internal state variable. The
subassembly of a passive movable component and a passive fixed component may or
may not have a rigid relationship. For example, in Figure 4.1, the subassembly of
S$2 and 53 has a rigid relatiénéhip, while T' and $253(or only S1) have a non-rigid
relationship. A state verification and validation procedure(sensing) will be followed
to check and confirm the geometric states for the objects during the execution of the
assembly or disassembly task. The current state of a non-rigid group is an internal
variable.

Each assembly operation may have a reversible decomposition operation. For
example, the group of T'(table), S3(strut 3) and S2(strut 2) represents a non-rigid
combination of the table and two struts, where the two struts have already formed
a subassembly for the triangle configuration. The group R(robot) and S1(strut 1)
represent a rigid combination of the robot and a strut which shows that the robot
is holding a strut. These two groups could be combined or assembled to generate a
new group of which the robot is touching the assembly of three struts on the table.
This new group can either be decomposed to two original groups, or be decomposed
to two new groups. For a non-rigid group or object, the internal state change may
be defined among all feasible states of this group or object. The system geometric
states table incorporates all feasible geometric state relationships for possible states
of components and componentrgroups in the system. |

The AND/OR net[10, 11, 16] was defined in Chapter 3. It is directly derived
from the geometric states table. The nodes in the AND/OR net correspond to all
feasible components and component groups, which in turn correspond to all feasible

configurations in the geometric states table. The arcs in an AND/OR net have two

0 W mi W i oW om0 om0 s

I L N

Bl

Wil

Emnl'n "
T

el

I 1 i

e

Figure 4.2: The AND/OR net representation.

types, i.e., AND arcs and IST arcs. The AND arcs represent the feasible com-
binations and decompositions of objects or object groups. The IST arcs represent
the internal state changes for component groups or single components. The OR
mapping indicates the alternate selections for several different operations, i.e., an
component or component group may either follow an IST arc to transfer from one
state to another state, or be decomposed to a set of new components and com-
ponent groups, or be combined with other objects to generate a new component
group. Therefore, the AND/OR net not only represents each operation for assem-
bly or disassembly, but also represents the relationships among several alternative
operations.

The AND/OR net representation for the strut-triangle representation is shown
in Figure 4.2(The internal state variables are not explicitly shown in the figure).
Note that the AND/OR net is from the task level point of view. An AND/OR
net incorporates all feasible assembly/ disassembly/IST sequences. We can directly
observe an efficient sequence from Figure 4.2, i.e., the robot first reaches S1 which
is held by the holder. Then the robot goes to pick up S1 and leaves the holder.
Afterwards, the robot reaches the subassembly of $2 and S3 which is lying on

the table and assembles the triangle structure. Last, the robot leaves the table and

71

leaves the strut-triangle on the table. The final state is thus reached. This particular
assembly/ disassembly/IST task sequence is listed as follows:

1. R, S1H(initial state) = RSIH, // Assembly

2. RS1H = RS1, H, // Disassembly

3. RS1, S2S3T == RS1S2S3T, // Assembly

4. RS152S3T = S1S2S3T, R(final state). // Disassembly

4.3.2 AND/OR Net to Petri Net Mapping

To implement convenient communications between the task planner and the
rexecution controller andv’to rclearly simulate and analjze the -task sequence, we map
the AND/OR net task level representation to a Petri net[10, 11, 16]. One important
property of a Petri net is the representation of serial and concurrent events and
resource constraints.!

A formal definition of Petri nets and related properties, as well as the math-
ematical operations on Petri nets, are defined in'[84, 89]. Some definitions and
notations were introduced in Section 3.3. The mapping of the AND/OR net to the
Petri net is described in detail in [10, 11, 16]. For A; and A, discussed in §3.3.1, ¢;
and t; are two new opposite transitions which are added to the Petri net where the
nodes are being directly mapped to places correspondingly.

Each node in the AND/OR net is mapped to a place in the Petri net. All
transitions in the system AND/OR net can occur in either direction based on the
assumptions of reversibility and feasibility. Using this property, we can map each
AND/OR net transition, i.e., an AND arc or IST arc, to two opposite transitions in
the Petri net. Each place in the Petri net represents an individual state even though

some states may represent the same component or component group. Thus the

For our current analysis, we use the Generalized Stochastic Petri Nets(GSPN) software[73, 74]
to represent the system and carry out some simulations as well as verifying the task sequences.
Some properties of the Petri net such as T-invariants, P-invariants and so on, can be obtained

using this software.

i

ml iy

il

L Hi

il

§i L) i | [N Nl mi mn W

L

Ll

‘I\I [NULELE

5

[H -uT |

72

$18283T R SIH

§283T

Figure 4.3: The Petri net, PN0, mapped from the AND/OR net.

Petri net is a complete representation of the system states, which offers advantages
to model both state and operations sequences. We have shown that the following
properties of the resulting Petri net, i.e., safeness, l-boundedness, liveness, and
reversibility, are guaranteed(10, 11, 16].

For the sake of simplicity, we call the Petri net mapped from an AND/OR
net as a Level 0 Petri net(or PNO) in the following discussions. PN0 for the strut-
triangle example is shown in Figure 4.3. The initial state is represented by the initial
marking of the Petri net. Before the operations of the system, the robot is free, strut
1 is “fixed” on the holder and the subassembly of S2 and S3 is lying on the table.
This initial state is shown with a token in place R, S1H, and §2537, respectively.
The final state will be represented with one token in place R, one token in place H,
and one token in place 5152537 The states of components and component groups

existing at the same time are geometrically independent.

73

4.4 Level 1 Petri Net Decomposition

In this séction, we define the;hig}'l' level decomposition of assembly operations
into move — combine subéequences, and the decomposition of disassembly opera-
tions into separate — move subsequences, where combine may refer to grasp or mate
operations in assembly. When replacing each assembly and disassembly transition
in the AND/OR Petri hetr by a subsequence of move, combine, and separate opera-
tions, we generate a Level 1 Petri Net(PNI) in which some common characteristics
of assembly and disassembly operations may be captured. In this decomposition,
when we perform the property analysis in the resulting net, we can think of it as an

expansion by corresponding subnets, rather than a replacement of transitions.

4.4.1 Decomposition Algorithm: PNO to PN1

The mapping from PN0to PN is the first step of the decomposition for assem-
bly plans. We formally define the decomposition algorithm at this level as follows.
It is assumed that the number of input objects of any assembly operation, and the

number of output objects of any disassembly operation, are both 2.

Decomposition Algorithm 1: Decomposition of PNO to PN1 Decompose
a Petri net PNO N = (P,T,a,3) mapped from an AND/OR net, where P =
{pr,p2s- . somb T = {ti,ts,...,ta}, @« € {P x T}, B C {T x P}, to a lower
level net, PN1.
fori:=1tondo

if t; € {assembly operations}, {(p;,,), (pi;,t:))} € @, (ti,pi,) € 8 then

{Each assembly operation is decomposed to a move command and a combine
command.}

T=T-{t}+{thtsn:=n+1; ¢ =17 t, :=t5

{Add a new state for p;, after moving, assuming p;, is or contains an active

1

il

K al N

W

b

Bl

|

Ll

1
i ‘I

El U

Wil

I

§ pn
U dans

I

{1

component. }
if p! ¢ P then
P:=P+{p,1} m:=m+ 1; pm = p}
end { if };
a = a = {(pi, ti), (Pias 1)} + {(Pir s 1), (8, £5), (Pas 1) 5
B =B = {(t:, i)} + {(], %)), (¢, Pis)}
end { if };
elsif t; € {disassembly operations}, (pi,,ti) € @, {(t:,pi,), (tispis)} € B
then
{Each disassembly operation is decomposed to a separate command and a
move command. }
T:=T-{t;}+{tLhtihn:=n+ 1 ti:=1t] to 1= th
{Add a new state for p;, after moving.}
f pl, ¢ P then
P==P+{p,,} mi=mA L pm =gl
end { if };
o= o — {(p, i)} + {(pa, 1), (PE 1)}
B = B — {(ti,pir), (5 pis)} + {(87, 85, (8, 2, (85 P}
end { elsif }
end { for }.

4.4.2 Analysis

After we obtain PNIV, we are interested in the analysis of properties such as
liveness, boundedness, and reversibility of this net. To avoid directly analyzing this
net which is more complicated than the original net, we investigate whether the
properties of the original net are inherited after we perform the decomposition. The

method of applying reduction rules to analyze a large system[62, 84], which reduces

75

it to a smaller and simplified system, is helpful to examine the properties of the
resulting system when we know the properties of the smaller system before decom-
position. As an approach to refine the Petri net, Valette[111] proposed a method
which replaces the transitions in the net with corresponding subnets, and guaran-
tees the resulting net to preserve the properties of liveness and safeness. Suzuki and
Murata[106] generalized the method for stepwise refinement or abstraction of the
Petri net representation, retaining the properties of liveness and boundedness. To
refine or simplify a net more efficiently without the loss of properties, Berthelot pro-
posed a set of transformations[4] which preserves the classical properties in nets. A
decomposition technique was also discussed to split a system into subsystems which
can be analyzed separately[5]. In another approach, reversibility was considered in
net decomposition by Zhou et al.[122].

To analyze the properties of decomposition for our application in robotic sys-
tems, we propose the following theorem which can be used to show that the resul-
tant net retains the properties of liveness, l—boundedness, safeness, and reversibility.

Partial or similar results can be obtained using the results in [106, 111, 122].

Theorem 4.1 If a place in a Petri net shown in Figure 4.4(a) is replaced by a subnet
shown in 4.4(b), and the original net is live, bounded, safe, and/or reversible, then

the resulting Petri net is also live, bounded, safe, and/or reversible.

Proof: We prove the inheritance of properties of liveness, boundedness, safeness,
and reversibility separately as follows.

Liveness: Based on the assumption, the net containing Figure 4.4(a) is live, i.e., no
matter what marking is reached from an initial marking, it is possible to ultimately
fire any transition of the net by progressing through some further firing sequence.
Any transition t € T can be enabled after a sequence of transition S = titi, .. L,
After p is replaced by the subnet in Figure 4.4(b), we have: (i) If S passes through

pin N, a token will be placed in p via arc (1) or arc (3). Correspondingly, p; or

g ®L " T (T wi m T I i Wi mE wl omn

|
|

Yl

IW"H EE
T

[V Lb AL
bk

{

6

1
(D 2

“) 3)

(a) (b)
Figure 4.4: Decomposition of a place to a subnet. Thenet in (a)is N = (P, T, a, 8),
and the net in (b) is N' = (P',T',d', f').
p2 in N’ will get a token. Then, $ will pass through arc (2) or (4) in N. Again
correspondingly, in N, § will not change, or, t, ta, tit2, or tqt; is added in the
sequence, so that each transition ¢t € T’ — {t,,12} can be enabled after a sequence
of transitions. (ii) If S doesn’t pass through p in NV, the sequence which make any
transition in N’ enabled except ¢; and ¢, will be the same as in N. Moreover, to
enable each transition in NV, p should contain a token at least once. Correspondingly,
either p; or p; should contain a token at least once. Therefore, ¢, and t; are also
enabled when p, or p; contains a token. Each transition in N’ is enabled after firing
a certain sequence of transitions. The liveness of N’ is guaranteed.
Boundedness: We need to show that for any place in NV, the number of tokens does
not exceed k. After p is replaced by the subnet in Figure 4.4(b), for any sequence
of transitions & = ¢;t;,...t;,, we have: (i) If § passes through p, as in the proof of
liveness, for V', the sequence will be the same, or ¢, or t; is inserted in the sequence,
or a loop of t,¢; or t,¢, is inserted. All these will not change the capacity of tokens
in places of N’. (ii) If S does not pass through p, the sequehce will be the same as
in N. Therefore, the property of boundedness is verified.
Safeness: Safeness is a special case of boundedness in which the maximum capacity

for each place is 1. Following the same strategy as the proof of boundedness, we can

77

also verify the property of safeness of N'.

Reversibility: As in the proof of liveness, we assume a reversible sequence from
any reachable markiﬁg to the initial marking is & = t;,¢,,...¢,. (i) If this sequence
passes through p, based on the direction of S follo;ving (2) or (4), we get an updated
S which is the same as the original sequence, or with ¢, or ¢; added, or with a loop
of tit; or t3t; added. (ii) If this sequence does not pass through p, S will not be
changed. Moreover, if the reachable marking contains a token in p, then accordingly,
there is a token in p; or p; and the sequence will also be the same or changed with

t1, t, t1t2 or tyty added. In any case, the reversibility property in N’ is guaranteed.

Q.E.D. T

4.4.3 PN1 for the Example

For the assembly system shown in Figure 4.1, the objects consist of active
devices and passive parts. As described in Table 1, the only active device is the
robot(R). The parts are designated as ﬁxed(staticj and movable parts. The fixed
parts are the table(T') and the holder(H). The movable parts are strut 1, strut
2, and strut 3. The combine operations for (R,S1) — RS1 and (R,S1H) —
RS1H are ‘grasp’, while the combine operations for (51,5253T) — S15253T and
(RS1,5253T) — RS15253T are ‘mate’.

If we replace each transition in the Petri net shown in Figure 4.3 by associated
move, combine, and separate operations the PNI net is generated. The resulting
Petri net is shown in Figure 4.5. Using the above theorem, we know that PN! main-
tains the properties of liveness, safeness, and reversibility. Using a search algorithm
for feasible sequences[16] in a Petri net, a feasible task command sequence to reach
from the initial state to the final state is generated as t1(Move R1 S1, Grasp R1
S1), t3(Move_.Comp R1S1 H, Move R1S1 R1(Temp_Pos)), t6(Move R1S1 S2S3T,
Move_Comp R1S1 S2S3T), t8(UnGrasp R1 S15253T, Move R1 R1(Init.Pos)). This

|

]

i

I

78

mv(R1,S182S3T)

grs(R1,5152S3T)

mvem’(R151,5283T)

mv(R1S1,TEMP)

Figure 4.5: Level 1 Petri net, PN, for the example in Figure 4.1. Each transi-
tion in the net represents an operation. The label indicates the type of operation:
mv(Move), grs(Grasp), ungrs(UnGrasp), mvem’ and mvem(Compliant Move, in dif-
ferent directions); and the objects involved: R1(robot 1), S1(strut 1), INIT(initial
position of robot 1), R1SI(R1&S1 subassembly), H(holder), TEMP(temporary
position of R1S1 in the free space), $2S3T(S2&S3 subassembly on the table),
S152S3T(S1&52&S3 assembly on the table). The first operand is the movable ob-
ject.

79

sequence can be linguistically described as: (1) robot 1 moves to strut 1; (2) robot
1 grasps strut 1; (3) robot 1 holding strut 1 compliantly leaves the holder; (4) robot
1 holding strut 1 reaches the temporary position; (5) robot 1 holding strut 1 moves
to subassembly S2S3 on the table; (6) robot 1 holding strut 1 compliantly moves to
subassembly $253 on the table; (7) robot 1 ungrasps assembly S1S2S3 on the table;

(8) robot 1 moves to the initial position.

4.5 Level 2 Petri Net Decomposition

The PN! shown in Figure 4.5 can be further decomposed to a set of lower
level oberations based on the types of fnotion and thjeiresources required. The
decomposition of motion is represented by expansion of a move transition into free-
motion and fine-motion. The addition of resources required for sensing and planning
is achieved by adding places. In the examples discussed here, places are added to
represent motion plans and sensors. In the example shown in Figure 4.6, an assembly
operation is decomposed into motion and mating oberations, with motion plans ‘P’

required as preconditions, and a camera, C2, required to control the fine-motion.

4.5.1 Decomposition of Motion to Free-Motion and Fine-Motion

The following algorithm decomposes each motion operation into free-motion
and fine-motion steps. In the resulting Level 2 Petri net, no two places represent the
same state for the same component or group. Because this net can be considered as
replacing some places by corresponding subnets, and PN! has been shown to have
properties of liveness, safeness, and reversibility, the resulting PN2 net in Figure 4.7
also has these properties. The formal algorithm to perform this decomposition is

shown as follows:

Decomposition Algorithm 2: Decomposition of Each Motion Command

i

i

f
[l

i % & o mi | | a

it

o

TN

| W vimar

i

!\

80

—] free_motion

® — @ _O0C
$/
@ —] fine_motion

1] mate

(&3

Figure 4.6: Decomposition for the AND/OR net to Level 2 Petri net. In the
resulting Petri net, places ‘P’ are the precondition plans, for the corresponding
motion or mating operations. Place ‘C2’ is used to indicate the arm camera, which
is used for sensor-based motion. '

81

R1
v_free(R1,
—] = RLED - mv_free(R1,INIT)
my_free(R1SIS2S3T) g~ mv_free(R1,INIT) e
mv_fine(R1,H)
— mv_fine(R1,INIT)
mv_fineR1 515233 v_fine(R1,INIT) —
- ’ ' @ RT
O ®
— — Jgrs(R1,51) poungrs(R1,51)
grs(R1,S15283T) . ngrs(R1,518283T) .
{ (R1S1S283T YRIS1H
mvem’(R1S1,52S3T))
_ cm(R §1,5283T)] - mvem(RISLE)
mvem’(R1S1,H)
O O
. RISI"I . R1S1"2
— ‘ﬁ"e(RISl'SBm — mv_fine(R1S1,H)
mv_fine(R1S1,TEMP) mv_fine(R1S1,
(RG] (YRTS172
mv_free(R151,TEMF) mv_free(R1S1,5253T)
e — = mv_free(R1S1,H)

Figure 4.7: Decompositions for Level 2 Petri net, PN2, with expanded motion
operations.

i
|

LI

[

"
I

R L

i

Wil |

&l

Iy
el

82
in PN1 to Free-Motion and Fine-Motion Commands.

for j:=1tondo

if t; =1, (p,t]) € o, (¢],p{) € f then

{t7* is a free-motion command and t7? is a fine-motion command.}
T:=T-{tr}+ {tt7Phni=n+ 1t = trl 4, 1=t
if p, ¢ P then

P:=P+{p}im:=m+1pn:=p

end { if };
o= o= {(poth)} + {(po 1), (P 1))
B =B - {(¢. A} + {(e7 p0), (87, P}

end { if };

elsif t; = t!, (pi,t!) € o, (t},p}) € B then
{t!! is a fine-motion command and t!2 is a free-motion command.}
T:=T-{t{}+ {tHtPni=n+ 1 tj:= =t ¢, 1= 11
if pi ¢ P then

P:=P+{p}im:=m+1 pm:=Pp

end {if };
a=a={(p,th)} + {(p, t1), (Pl t)};
B =8 — {(th,p)} + {(t, p). (&2, P}

end { elsif }

end { for }.

4.5.2 Adding Resource Places to the Net

In a further refinement of the plan, we introduce additional lower level objects
which represent required resources for execution. In these examples, sensors and

plans are introduced as lower-level objects.

Ongmal Net Added Place

N

O

Figure 4.8: Adding a place with loop connections to transitions in a Petri net and/or
a place separable with the net.

Many transitions may require a plan as a precondition to execution. There are
four kinds of planners existing for this example: free-motion planners, fine-motion
planners, grasp planners, and sensor-based motion planners. The plans are often
implemented on-line because of the uncertain state and the dynamic environment.

Certain fine motions may require a sensor to perform sensor-based motion. In
this example, camera 2 is a shared resource and availability of C2 is represented by
a token in a C2 place. The decomposition is based on the following theorem and

algorithm.

Theorem 4.2 If we add a place, which (1) contains a token, (2) forms loop con-
nections with some transitions, and/or, a separate place without any connection to
a Petri net(Figure 4.8) which has the properties of liveness, boundedness, safeness,

and reversibility, the resulting net also preserves these properties.

Proof: (i) The liveness of a Petri net is determined by firing a sequence of transitions
and the number of tokens received and produced by transitions. When we fire a
sequence of transitions, if this sequence passes through the transitions which have
connections with the specified place, these transitions will not produce different
numbers of tokens for this place or other places as in the original net. If the sequence

does not pass through this place, and/or, a separate place is added to the net, the

BE n

Wi m ®m

L A T 1

gl

g

TR

I

84

sequence firing will be the same as in the original net. In any case, the liveness will
be inherited by the resulting net. (ii) The boundedness relates to the capacity of
tokens in each place. As we have shown in proof (i), the boundedness of the original
net is also preserved in the resulting net. (iii) Because the token in the place we add
to connect to the original net always contains 1 token, and the number of tokens
in other places will not exceed 1, the resulting net is safe. (iv) When we follow
a reversible sequence to go back to the initial state from any reachable marking,
because the place we add to connect to the net does not influence any transition in
any sequence, the reversibility property is reserved. The case is the same for adding

a separate place.

Q.E.D. O

The following algorithm formally proposes the decomposition to add PLANs

to all transitions, and a sensor to all sensor-based transitions.

Decomposition Algorithm 3: Add PLANs for All Transitions and Add

Sensors to All Sensor-Based Transitions.

{add plans for all transitions}
fori:=1tondo

P:= P+ {PLAN;}; m:=m+1; pn := PLAN;; pm := 1
end { for };
{add C2 to all sensor-based transitions}
P:=P+{C2}im:i=m+1; pm :=C2; prm =1
fori:=1tondo

if sensor.based(t;) = TRUE then

a:=a+t+ {(pmvti)};

85

B:=p8+ {(tﬁpm)}
end { if }
end { for };

Based on this theorem, the complete Level 2 Petri net is generated, and the
result is shown in Figure 4.9 for the example. In Figure 4.9, C? is a place with loop
connections to two fine-motion transitions, and each PLAN place(with a token)
forms a loop connection with the corresponding transition in the original net. We

conclude that the net decomposed is live, 1-bounded, safe, and reversible.

4.5.3 Independence of Plans and Sensors

In the discussion above, the addition of resource places for plans and sensors
assured that planning and sensing could occur independently. In practice, a sens-
ing operation may be required to acquire the state of objects before a plan can be
executed. The augmentation of the Petri net to represent such dependence is more
dependent on specific configurations and devices. The following algorithm defines
a decomposition for an assembly task which requires a sensing operation for each
motion, and a constraint that sensing for the fine-motion requires a free robot hand.
(This situation occurs when a sensor is attached to the hand, and only functions
when the hand is empty.) The following algorithm applies to the Petri net in Figure

4.10.

Decomposition Algorithm 4: Decomposition for Plan-Sensor Dependence.

if C2 ¢ P then
P:=P+{C2}im:=m+1;pn=C2; m :=1
end {if};

Sl

&I I

il

& i

M

B (Ui

U

il

T

ai.

ey ‘ [
il

ik

)
o0l

—r—

(R]

.

"
i

|

LT
ke

LS

86

L) . ,

Each transition includes ¢
1

a precondition of plan, ‘P, | !

R1 ¥7 Jr
O: "
v_free(R1,51) -
— —] m— ¢ PSmv_free(R1,INIT)
mv_free(R1SIS253T) s~ 3 my_free(RLINIT) ~RPT
w_fine®RLINIT) 1y fig
_— — —mv_fine(R1,INIT)
mv_fine(R1,515253T) QN7
S)
A ol
15283
— - D I grs(R1,S1) -1 ungrs(R1,51)
grs(R1,515283
R1518283T (+)C2 (RISIH
mvem’(R151,52S3T)
. T) — — mvem(R1S1,H)
mvem’(R1S1,H)
O N O
Rlsl"l .‘I 151"2
mv_fine(R1S1,TEMP
] —] — — mv_fine(R1S1,H)
mv_fine®R1S1,TEMP) mv_fine(R151,5253
(] ®

mv_free(R151,5283T)
—] — — — mv_free(R1S1,H)
mv_free(R1S1,TH mv_free(R1S1,TENIP)

Figure 4.9: Level 2 Petri net, PN?2, with a resource place, C2, introduced to model
camera availability. In addition, each move and grasp operation has a resource place,
P, as a precondition.

87

if Cy ¢ P then
P:=P+{Cll;m:=m+1; pp =Cl; pn := 1
end {if};
for j:=1tondo
85 =25 (P 1), (P 80), (P, 811), (91, 07)} C a0, (811, 80,), (£22,0)) € 8
then
n:=n+6; t,_s ;= plan_path; t,_4 := plan_path; t,_3 := plan_path;
th2 = find_view_pos; t,_; := find_view_pos; t,, := mu_free(R, p;,);
T:=T 4 {tn, ta-1, taogy tnos, taosg, tuss);
m:=m+4; pm-3 1= VIEW_POS1; pp_y := VIEW _P0OS2;
Pm-1:= R pn:= FREE_ PLAN(R); P:= P + {PmsPm—1,Pm-2, Pm_3};
#(PLAN(t")) := 0; u(PLAN(t?)) := 0
a = a+{(pi,tn-5), (Pm-3,tn5), (C1, tn3), (Pizs tn-2), (Pm_3, tn-3)};
a = a+{(p;,, tn-a), (Pm-2, tn=y), (C2, tn_y), (Pias ta1), (Pt tnc1))
@:=at{(Btn), (pmstn), (Ritaca)l;
B:= 8- {(t, PLAN(t]")), (t7*, PLAN(t"))};
B = B+{(tn-5,Pir), (ta=s, Pm=3), (tn-s, PLAN(E)), (tn-2,Pm-3), (tn=2, C1)}
B := B+{(ta-2,Pi), (tn=3, Pm-3), (tn-0,P,,)s (tna, PLAN(E7%)), (tn—s, Pm-2)}
B := B+ {(ta-1,Pm-2), (tn-1,C2), (tn-1,Pir), (ta-1, B), (tn, Prcr), (tn-s, R),
(tn-3,Pm)}
end { if }
end { for }

end.

Applying this to our example, we now assume that to obtain the free-motion

Plan for A, camera 1 is required to find the view position of B and then the path

’

H

i
1l

I

IE

| AFI

i

AN

J W Dl

] et
Y.

| et

Imw .

e
el

rm

r\m\ L1d
il 1 8

il o 11

rm\w o
Ly

r

I,- Lm o
[

88

planning procedure is called to generate a trajectory to move to an approach posi-
tion. To obtain the fine-motion plan, we must first clear the robot gripper on which
the camera is mounted, so that it can freely move to B and use camera 2 which is
mounted on the robot arm to detect the precise position of B. Using the resulting
view position of B, we generate a free-motion plan for the robot to move near B
and view the position of B. Then a fine-motion plan is generated and a fine-motion
path can be followed to mate B by A.

If A is an object containing R, a conflict from the resource, R, occurs and
then a disassembly operation must be performed to the free R from A. After the
sensing operation by the camera on R is finished, A must be reassembled again.
The Petri net representation in Figure 4.10 shows the conflicts of resources as well
as the precedence relationships among the generation of plans and motions. This
subnet can be merged with the Level 2 Petri net in Figure 4.9 to obtain a final Level
2 Petri net shown in Figure 4.11. The decomposition for this example is shown for
the R1S1, S253T mating operation.

Figure 4.11 shows the resulting final Petri net. In one possible sequence, the su-
pervising planner could go all the way down to the place R151 and fire the plan_path
transition to get a free-motion plan. However, the precise position of S253T is not
known because of the non-rigid combination of the table and subassembly 5253,
and muv_free(R, $253T) cannot be fired because the robot is not free. The plan-
ner could generate a sequence to return, get the free robot, and fire find.V Pos.
After a token has been put into place V Pos, we store this state until a token is
put into R1S1’'l to generate the fine-motion plan. At this time, the robot is free.
We then go all the way down to the place R1S1'l again and make the transition
muv_fine(R151,5253T) enabled.

A preferred plan sequences the state identification first, prior to beginning

assembly. This plan can be found from the sequences generated by the the search

89

l

{

o

A plan_path ~ Cl
VIEW_POSI1(B) find_view_posB
FREE_PLAN(A) o
mv_free(A.B) - VIEW_POS2(B) e
P

»

n

find

FINE_PLAN(A)

plan_path

o

mv_fine(A,B) mv_free(R.B))

_PLAN(R)

e

>
!

move_comp(A,B)

wi

AB

i

Figure 4.10: Decomposition for plan-sensor dependence.

ol Nabai + 4

mn L]

| S

I' [}

| I

90

mv_free(R1,51S233T)
mv_free(R1,INTT)
mv_free(R1,INIT)
mv_fine(R1,515253T) mv_fine(R1,51) e&
mv_fine(R 1, INI[I)
R1™2 v_fine(R1
15283
$283
ungrs® R grs(R1,51) ungrs(R1,61)
grs(R1,515283T)
1518283T 1S1H
vem(R151,5283T) A = vem(R1ST,H
mvcm’(R151,82 mvem’'(R1S1,H)
* 15283
181"
mv_fine(R1S1,TE mv_| 151,8283T) v_fine(R1SH{H)
v_fin
RIST’
R1SI'1 F\mv_free(R1S1,H)
mv_free(R1S1,) mv_free 528 v_free(R1S1 ."%)
FREE_PLAN,
— - RIST -PLAN
_pa
. Cl VPosl plan_path
md_VPOS -
HRHEE_PLAN(R) R’ find_vPos

Figure 4.11: The final Petri net.

91

algorithm discussed before.

We can find the view position of $253T at the very beginning and store this
position, at the sarﬁe tirrné,;we ca; gené;até the free motion plan for the free robot,
and then use the arm camera to find the precise position and store it. In this way,
when R1S51 state is reached, we can directly generate both free-motion and fine-
motion plan without the error recovery loop. Execution of the long loop will be
avoided.

It is quite complex to verify the properties of thé final net. However, if we
loosen the definitions of reversibility and add stronger constraints on searching feasi-
ble sequences as described below:,”we still obtain the properties of liveness, safeness,
and reversibility for the final net through the decomposition theorems described
above.

First, the final net is live. As we see from Figure 4.10, if we have a token
in A, B, and R(ifﬁthere is no token in R, we can follow an additional sequence to
obtain a token in R), from the results of simulation on GSPN, we could ultimately
get a token in AB. For each PLAN decomposition in the net, we can obtain a
similar result. Therefote, the net is live. Secondly, when we search a new system
state, any place obtaining more than one token will be considered as containing
one token. Therefore, no state will have a marking in any place containing a value
other than 0 or 1. Any sequence of transitions will not destroy the property of
1-boundedness and safeness. Thirdly, to investigate the property of reversibility,
if we ignore the tokens in the places only for planning such as VIEW_POS1(B)
and VI EW_P0OS2(B), we can consider the net as a reversible net, because once
VIEW_POS1(B) or VIEW _POS2(B) gets a token, it will not lose it. However, as
we showed in the proof of liveness above, if A, B, and R have a token initially(Figure
4.10), a token will be finally obtained by AB, and R will retain its token. The case

is similar for other transitions. The net is thus reversible, if we assume the values in

mr
(T

m i

I

N "B

[y El | TR T i e Bl m

Uy L
L

l.‘. R

i
[R

L

“'\"‘H‘

92
some places of the fhariing are don’t care conditions for the property of reversibility.

4.6 Simulation Results and Discussions

Successive decomposition of the Level 0 Petri net using the algorithms dis-
cussed above yields the PN2 shown in Figure 4.11. The search algorithm may be
used on the Petri net at each level to identify feasible sequences. All feasible se-
quences may be obtained for each level and the relationships between the sequences
at different levels can be studied. At the lowest Level 2, there are greater conflicts
and constraints among the shared resources. Normally, we cannot expect a shortest
lower level sequence to be obtained via the decomposition of the shortest sequence
generated from the higher level representation.

We list the practical feasible sequences generated at each level of the Petri net
as follows(we assume no transition is fired more than once):

Level 0. Petri net in Figure 4.3:

The number of feasible states: 3.
The number of feasible sequences: 1.
Feasible sequence: t1 t3 t6 t8.

Level 1. Petri net in Figure 4.5:

The number of feasible states: 10.
The number of feasible sequences: 1.
Feasible sequence:
Move(R1, S1);
Grasp(R1, S1);
Move_Comp(R1S1, H);
Move(R1S1, Temp_Pos(R1S1));
Move(R1S1, S253T);
Move_Comp(R1S1, S253T);

93

UnGrasp(R1, S152S3T);
Move(R1, Init_Pos(R1)).
Level 2. Petri net in Figure 4.6(Motion decomposition):
The number of feasible states: 15.
The number of feasible sequences: 1.
Feasible sequence:
Move_Free(R1, App_Pos(H));
Move Fine(R1, Grasp.Pos(S1));
Grasp(R1, S1);
Move_Comp(R1S1, H);
Move_Fine(R1S1, Temp_Pos(R151));
Move_Free(R1S51, Temp_Pos(R1S1));
Move Free(R1S1, App-Pos(5253T));
Move_ Fine(R1S51, Ins_Pos(5253T));
Move_Comp(R1S1, S253T);
UnGrasp(R1, S15253T);
Move Fine(R1, Init Pos(R1));
Move Free(R1, Init_Pos(R1)).
Level 2. Petri net in Figure 4.9(Adding C2 and PLANSs):
The number of feasible states: 15.
The number of feasible sequences: 1.
Feasible sequence: the same as that in the above decomposition.
Level 2. Petri net in Figure 4.11(Generating PLANSs):
The number of feasible states: 142.
The number of feasible sequences: 1.

Feasible sequence:

Find_Pose(S2S3T, C1, Pos(52S3T));

I 1l

(Ul

SN EE

&

ML

i

Ril ELD

[T

SRR (48 (S S

e

(e

SIS

R

{r

1"

I

94

Plan_Path(R1, View_Pos(N));

Move Free(R1, View_Pos(N));
Find_Pose(N, C2, Pos(N));

Move Free(R1, App_Pos(H));
Move_Fine(R1, Grasp_pos(S1));
Grasp(R1, S1);

Move_Comp(R1S1, H);
Move_Fine(R1S1, Temp_Pos(R1S51));
Move Free(R1S1, Temp_Pos(R151));
Plan_Path(R1S1, App-Pos(52S3T));
Move_Free(R1S1, App-Pos(S2S3T));
Plan_Path(R1S1, Ins_Pos(52S3T));
Move_Fine(R1S1, Ins_Pos(S2S3T));
Move_Comp(R1S1, S253T);
UnGrasp(R1, S152S3T);
Move_Fine(R1, Init_Pos(R1));
Move_Free(R1, Init_Pos(R1)).

For most applications, more than one feasible sequence may be generated
and an evaluation and selection strategy is used to choose among them. Normally,
searching sequences from higher level representations may be performed to verify
the correctness of decomposition and the final net is searched to generate a final
task sequence.

The assumption of firing any transition at most once is useful to constrain
the creation of the shortest sequences. If, under this assumption, we cannot reach
the final state, a looser assumption of firing each transition at most twice could
be introduced. Alternatively, the shortest sequence which has the least conflict on

resources and the least probability of firing any error recovery subsequence could be

95

used.

As can be seen from the simulation results, the shortest sequence from the
lowest level of decomposition of the representation of task sequences could not be
obtained via the decomposition of preferred higher level sequences directly. An
intuitive observation of this fact is shown where a sensor is used on the active
component, the robot. In this case, a resource conflict appears. For example, when
a robot is required to pick up a strut on a table and transfer it to a holder, the
robot first moves to and near the strut on the table. The grasp planner for the
robot might require the exact position of the strut, and if a camera is mounted on
the robot arm, it could directly perform sensing operations and no error recovery
procedure is involved. If we use the decomposition on the representation rather than
on the sequences, a shortest sequence will be guaranteed to be found on the final
stage decomposition and the conflicts on resources will be automatically reduced to
a minimum.

Another issue we may want to consider is whether our representation includes
the possibility of parallel operations or concurrency. Two types of concurrency,
parallel and sequential mutual exclusions for Petri net modeling of manufacturing
systems with shared resources are discussed in [124]. In Figure 4.11, we can find: (1)
the transitions, find_vPos(connected with CI) and mv_free(R1,51) are two parallel
operations without resource conflict; (2) after find_vPos(same as above) is fired,
plan_path(connected with FREE_PLAN(R)) and mu_free(R1,51) are two parallel
mutually exclusive operations with shared resource R_7; (3) if there are two tokens
in $258T and SiH with different colors, sequential mutual exclusions with shared
resource R appear. In this case, after RI moves to one S253T and uses its camera
to sense the insertion position of the subassembly $253, two choices for the following
execution should be selected. The first choice may be continuing to grasp an S! on

a holder H and complete the assembly of $15253. Another choice may be to sense

L

/I

"
I

Wil

il

|
[l

b

I

|"
Al

Ivm -
Mo e

ot T

v

96

another S25% on the second table. The resource conflict for RI also appears at
this time. Notice in this discussion the property of 1-boundedness is generalized to

k-boundedness, where k& = 2.

4.7 Conclusions

In the above simulations, it is assumed that no transition will be fired more
than one time. In this example, the number of sequences generated is 1 for all
the decomposition levels. This is because most transitions in the Petri net for this
example are essential. The probability of selecting alternative partial sequences or
transitions is therefore very small. If we suppose some transitions can be fired two
or more times, the simulations show that the number of feasible sequences will be
dramatically increased and it will be very costly to store all sequences and compare
different sequences among them. Under any condition, the sequence found for the
final net for the example is the shortest and thus most economical to implement.

The verification of property inheritance duriﬁg decompositions for assembly
tasks has been developed. We have shown that the Petri net mapped from the
AND/OR net guarantees safeness, 1-boundedness, liveness, and reversibility. Based
on these conditions, the properties of all lower levels of net representations are
discussed. Because those properties are not lost during specific decompositions, we
can guarantee a deadlock-free and fault tolerant system.

An important topic for continued research is how to make the property of
reversibility on the final net stronger. If all places in the final net are taken into
account, can the initial state be reached when an error occurs? A related topic is to
guarantee state reservations for all waiting components or component groups during

recovery.

, , . . CHAPTER 5 ,
REPRESENTATION AND ANALYSIS OF UNCERTAINTY USING

FUZZY PETRI NETS

This chapter proposes a generalized definition of the fuzzy Petri net(FPN) and the
reasonihé structures of transitions in the FPN. Three types of fuzzy variables: lo-
cal fuzzy variables, fuzzy marking variables, and global fuzzy variables, are used to
model uncertainty ba.sed on different aspects of fuzzy information. A fuzzy Petri net
is used to model the incomplete, uncertain, and approximate information associated
with firing of transitions and changing of states in robotics and manufacturing sys-
tems. Using FPNs to model a system, a fuzzy reasoning strategy may be used to
infer new fuzzy values in output places after the corresponding enabled transition
is fired. A giobal fuzzy variable is used to sequence operations with key precedence
relations for a manufacturing system. A local fuzzy variable is used to represent
the uncertainty in local configuration variables of the system and may be used to
control on-line reasoning about sensor-based execution. Several basic types of fuzzy
Petri nets are analyzed, and the necessary and/or sufficient conditions of safeness,
liveness, and reversibilityvare given. An example of modeling sensory transitions in
a robotic system is discussed to illustrate reasoning about input local fuzzy variables

to obtain mutually exclusive tokens in the output places.

5.1 Introduction

While Petri nets[84, 89] have been widely used to model computer systems[79,
81, 93], manufacturing systems[2, 116, 125], robotic systems(10, 11, 12, 13, 14, 15],
knowledge-based systems(8, 52], and other kinds of engineering applications, they
may be unable to model incomplete, uncertain, and approximate information or

states. An operation and its preconditions and postconditions in a manufacturing

97

! n} | .
mil m ; L

W

Eill,

i

i

a.

1k

|

.
Wi

Rl

i

Al

‘I‘C L

b
L s

all

i

98

system can be represented by a transition and its input places and output places
in a Petri net model. Each token in some place of an ordinary Petri net is used
to represent an entity, such as an object or an abstract piece of information. How-
ever, a real system may contain objects which require associated variables to fully
represent an object state. In addition, the values of those associated variables and
the occurrence of the event itself may be uncertain. In such a system the decisions
which choose from enabled transitions as well as the generation of a next-step state
are based on these approximate descriptions of objects.

Because of the necessity of modeling and representation of lower level oper-
ations and objects in a robot system[15, 19], ordinary Petri nets are found not
sufficient to represent uncertainty and approximate information. The uncertainty
in a robotic system may occur due to many factors during the execution of a planned
sequence or program. When an operation such as ‘the gripper A grasps the object
B’, is modeled by a transition ¢; in a Petri net N, one kind of uncertainty within
this grasping operation is the geometric uncertainty in the coordinate of the grasp
position or the contacting position of the gripper with the object. Because this
position is important for the succeeding operations of the robot gripper such as mo-
tion, force control, and assembly, we need to represent uncertain information in the
output place which shows the result of the robotic grasp operation. Another kind of
uncertainty within this operation is the uncertainty of the success of this operation,
and the uncertainty of degree completion for the whole task of the robotic system,
such as assembling a complete set of objects in a certain configuration or reaching
a final system state.

Based on the above discussions, a fuzzy Petri net may be used to describe the
operations and conditions with uncertainty. Uncertain states are associated with
objects, and transitions are used to model fuzzy operations such that the input

variables of transitions will be reasoned approximately and efficiently rather than

99

precisely. This approximation or uncertainty is propagated along the net so that a
predefined transition sequence may be followed as desired, or, if errors accumulate,
the operations sequence should be stopped so that the error can be detected by the
system monitor and the correct recovery sequence may be followed to recover to a
correct system state. Based on extensions to the theory of ordinary Petri nets, a
definition of the fuzzy Petri net and the associated embedded reasoning structure
was presented in [17, 18, 22]. This definition was used to model a sensor-based
robotic system which incorporates reactive, uncertain, and dynamic properties.
One example of the utility of using fuzzy concepts to deal with information is
found in knowledge based systems with uncertainty. When this type of system is
modeled by Petri nets, the assumption of token values in the net to be 0 or 1, is not
sufficient to describe the reasoning process or to represent the degree of uncertainty
of facts. An example for robotic systems is based on our observations that the
properties of some objects in an assembly or material handling system may be
changed[12, 14], so that the same place may contain different kinds of tokens during
different processing times. The properties of objects may be physical or geometric
characteristics which are parameterized to define the objects. In this case, it is hard
to use the same crisp value to represent the tokens in different processing states.
Since its emergence in 1965, fuzzy sets[119] have been applied in many aspects
of engineering systems, decision systems, medical systems, industry, transportation,
and other applications. Numerous papers have been published in all aspects of
the theory of fuzzy sets, fuzzy mathematics, and their applications. Qur reasoning
strategy in fuzzy Petri nets is based on the the theory of fuzzy logic, and the firing
of transitions is equivalent to the operations on membership functions in a certain
universe of discourse. A membership function g4 for a fuzzy set A is defined by
pa: X — [0,1], where a distribution of membership grades for each element in a

universe of discourse is given. A fuzzy singleton is defined as a membership function

L)

U [

!
i

i

|

BT

i

T

r

‘ I

100

in a universe of discourse, of which the membership grades of all elements are 0s,
except one and only one element, z, of which the membership grade is 1. We mark
the fuzzy value of this membership function as z.

In this chapter, we propose a generalized definition of a fuzzy Petri net and a
complete reasoning structure associated with a transition in the net. This definition
can be used in many applications of FPNs such as sequencing, planning, reasoning
about uncertainty, process control, and knowledge inference. Two kinds of important
planning strategies, off-line sequencing for task sequences, and on-line sensing and
reactively reasoning about firing sequences, are shown to be effectively solvable by
FPNs. We use local fuzzy variables to model the information which locally affects an
operation, and we use fuzzy marking variables to represent the state of the system.
The main differences between an ordinary Petri net and a fuzzy Petri net are the
fuzzy values associated with places and tokens, and the reasoning rules which govern
the firing of transitions. For an ordinary Petri net, a transition is fired if all input
places contain at least one token. For a fuzzy Petri net, the condition of firing is
also based on the local fuzzy variables associated with input places. Using a fuzzy
Petri net to represent a robotic or manufacturing system, we are able to handle
approximate information or uncertainty in the system. The reasoning about this
information is incorporated into the firing rules of transitions.

In the definition of a fuzzy Petri net, local fuzzy variables, fuzzy marking
variables, and global fuzzy variables were defined as different fuzzy information
carried through the net. In [12, 20], global fuzzy variables were used to model
the degree of completion of the robotic task so that an operations sequence could
be planned off-line while searching in the fuzzy Petri net model. Compared with
the strategy used in ordinary Petri nets, computational time and space are saved
because when the order of key ransitions are given, all planned sequences should

imply this order. Therefore, a correct sequence is defined as a feasible, complete,

Vg
v

"

]
| i

Lo,

i

101

and correctly ordered sequence. Any sequence which fails in satisfying this definition
is discarded during the off-line searching process. In [14, 21], local fuzzy variables
and global fuzzy variables are used simultaneously to model sensor-based robot task
sequence planning and the execution of operations involving the use of sensory data.
During the execution of a robot operations sequence, sensory operations can detect
the partial result of some key operations on-line and the accumulation of errors will
cause a local error recovery sequence or a global error recovery sequence. The local
fuzzy variables decide the choice of error recovery strategy.

Previous work on predicate/transition nets has described approaches to han-
dling predicate related expressions[39, 42]. Tokens in predicate/transition nets can
be structured objects carrying values, and transition firing can be controlled by im-
posing conditions on the token values. Predicate/transition nets have been used for
the management of expert systems, analysis in database systems, and many other ap-
plications. Research on colored Petri nets[54] reports related results though enabling
limited reasoning capacity. The major difference between the predicate/transition
net or the colored Petri net and the fuzzy Petri net is that a fuzzy Petri net can
represent more generalized data using fuzzy numbers and fuzzy reasoning functions.
The results of firing on some transition will depend not only on the input values,
but also on a reasoning process built in the transitions. The transition firing may
depend on the local fuzzy variable or the global marking based on different appli-
cations. The strategy of property analysis on predicate/transition nets thus cannot
be directly applied to the fuzzy Petri net.

Investigation of the properties of fuzzy Petri nets is very important for perfor-
mance evaluation of a system being modeled”. Reachability is a fundamental problem
in the research on ordinary Petri nets. The reachability problem on fuzzy Petri nets
is also defined on a feasible reachable set from an initial state. The reachability

problem can influence other properties such as liveness, safeness, and reversibility.

102

Safeness of fuzzy Petri nets is defined under the assumption that no more than one
copy of a single object appears in the system. Liveness of a fuzzy Petri net implies
that the reasoning process or the execution process can continue when the accumula-
tion of errors is still within a range of tolerance, and when errors go over a threshold,
an alternative sequence can be chosen in place of the original sequence. Reversibility
implies that at any time if errors are too large, a home state is reachable.

The discussions on fuzzy Petri nets in this chapter are arranged as follows: In
Section 5.2, the fuzzy Petri net definition is introduced and some components of this
definition are explained. A system state represented by fuzzy information is then
discussed in Section 5.3. Section 5.4 shows reasoning rules in the FPN. Section 5.5
gives analysis for some basic cases. FPNs for sequencing and FPNs for sensing are
discussed in Sections 5.6 and 5.7, respectively. In Section 5.7, sensing operations
are modeled as mutually exclusive transitions in a fuzzy Petri net and therefbre
reasoning on sensory data can be performed in these transitions. The conclusions

are given in the last section.

5.2 Fuzzy Petri Nets

The definition of the generalized fuzzy Petri net is shown as follows[17, 18]:

Definition 5.1 A fuzzy Petri net is formally defined as an 8-tuple:

FPNz(P, T, Qt’ Q, ﬁ’ My, My, #f)?

where
1) P={p1, p2, ---, Pn} is a finite set of places, n > 0.
2)T = {t, ta, ..., tm} is a finite set of transitions, m 2 0. PNT = 0.
3) Q:= {q1, q2, ..., qi} is a finite set of state tokens, | > 0.

4) a € {P x T} is the input function, a set of directed arcs from places to

transitions. We call each p; where (p;,t;) € a as an input place of t;.

la

n 1 | | & W i il W K @l ®m W

lw -
[

'y

I

h
0

nm

rm

[

("

(-

o

{

{4

103

5) B C {T x P} is the output function, a set of directed arcs from transitions
to places. We call each p; where (t;,p;) € 3 as an output place of t;.

6) ms: P — {(p,0)} assigns p; the value of a 2-tuple, (p, 0), where p repre-

- sents the local fuzzy variable and o represents the fuzzy marking variable.

7) my: Q: = {Ui(ki,o%), C} is a mapping from a token to a union of 2-tuples
of k; and the k;th global fuzzy variable, oy, or, to a constant, C, which indicates
no global fuzzy variable is attached to the token. oy, is a membership function in
a universe of discourse.

8) us: T — {f1, f2,..., fm} is an association function, a mapping from transi-
tions to corresponding reasoning functions. A reasoning function f; maps variables
associated with input places and a set of tokens to variables associated with output

places and another set of tokens.

If we denote the reasoning function for a transition ¢; as f;, firing of ¢; when it
is enabled will map (p,) from all input places to all output places and assign o to
output tokens. f; has at most three kinds of rules fér mapping p, ¢, and o. They are
written as r,, T,, and r,, respectively. These rules may or may not be independent,
and after firing t;, the original (p, o) may or may not stay in input places of ;.

If a place p; represents an object O;, then the local fuzzy variable associated
with it can be represented as p(p;); the fuzzy marking variable associated with it can
be represented as g(p;); and the kith global fuzzy variable within this place can be
represented as oy, (q;), where g; occupies p; in the current state. In this chapter, we
assume p(p;), o(p:), and oy, (g;) are independent, i.e., one variable cannot be inferred
from any of two others. When the fuzzy Petri net model is generated, we may assign
a priori local fuzzy variables to all places. Thus, even though a place contains no
token, the object it represents still has a local fuzzy variable. If we consider the

three types of variables for a set of places, pj,, pj;, - - - Pj,» W€ CaN write them as

p(pjl ZTIRRE 7pjw) = (P(Pj1)’ P(pjn)’ ARE P(ij))~

104

0(Pir s Piz» -+ 2 Pi) = (0(P) 0(Pi2)s - 5 0(Psa))-
ok (G Gipe - -5 Gin) = (9 (450), ox (g)s - - -y ok (g,),

where g;1, q;1, - .-, gj;, occupy p;,, Pizy -+ s Pius respectively.

Pictorially, each place p; is represented by a circle with “p;” and a label which
indicates the object p; represents attached to it, and each transition ¢; is represented
by a rectangle with “¢;” and “f;” attached to it. If (p;,%;) € a, there is a directed
arc from p; to t;. If (¢;,p;) € B, there is a directed arc from ¢; to p;.

The interpretation of a ‘token’ in a place depends on my(p;) = (p(p:), o(p;)).
From the above definition, three different ‘tyrp:es of variables are operated on or
carried along through the net. The three types of fuzzy variables have different

interpretations:

A local fuzzy variable is attached to a place. Its value indicates the
uncertainty of the local variable or object which is attached to the place.
It is represented by an n dimensional membership distribution function
on the assumption that the object is n dimensional. One example is
to define p(R) for the robot R. Because R has 6 degrees of freedom(3
for position and 3 for orientation), p(R) is a 6 dimensional membership
function. The membership grades are defined for each possible position
and orientation of the gripper in a given universe of discourse.

A fuzzy marking variable is attached to a place. It is a 1 dimen-
sional membership distribution function denoting the uncertainty that
a token exists in a given place. The universe of discourse for g is the
occurrence of the event denoted by the place. In one example, the place
may indicate the event that the robot has grasped an object. The fuzzy
marking variable indicates the uncertainty that the event has occurred,

i.e., whether the robot is actually holding the object.

L

i

R

;i

®

Il

i m

(I

i il me

I

'k

| SN

I

{

105

“ : U “
Robot | Tape U Robot Table

(a) (b)

Figure 5.1: A robotic system for a grasp task. The robot(R) moves to the strut(S)
on the table and grasps it. (a) shows the initial state for this task. R has 6 degrees of
freedom for the position and orientation of the gripper, (z,y, z, ¢,w,®). S is defined
by the position of its center and the angle between S and the z’ axis, (z',y",6). (b)
shows the final state of this task. RS is described by z”, the distance between the
grasping point and 0", the center point of S, under the assumption that the grasp
position will be on the strut.

A global fuzzy variable is attached to a token. This is an m dimen-
sional membership distribution function related to a characteristic vari-
able of a global task. The global fuzzy variable may be used to sequence
a set of transitions so that a global task can be completed. An example ‘
is the use of a global fuzzy variable to represent ‘degree of completion’ of
a task. The fuzzy value should increase during the execution to indicate

correct sequencing of operations.

Figure 5.1 shows an example of a robot assembly task which illustrates these
three types of fuzzy variables. This robotic system consists of a robot(R) and a
strut(T) on a table. The robot gripper(R) moves to and grasps the strut(S) on the
table, and this grasping state is Aéécéibed as RS. Figure 5.1(a) and Figure 5.1(b)
illustrate the system state before and after the ‘grasp’ operation.

This assembly task can be represented by a fuzzy Petri net shown in Figure 5.2.
D1, P2, P3 and p4 represent the conﬁguratioﬁs R,, S, R.S, and R, respectively. In this

representation, R, and R, means the robot gripper is open or closed, respectively.

106

Figure 5.2: The fuzzy Petri net representation for the robotic assembly task shown
in Figure 5.1. (a) shows the initial state of the system. (b) shows the final state
of the system. R, and R. means the robot gripper is open or closed, respectively.
p, o, and o of R, and S in (a) are mapped by f, to those of R.S, R., and §
in (b). Note that the same color of tokens in p, in (a) and in ps and p4 in (b)
indicates that a global fuzzy variable is attached to these tokens. Their colors are
different from that of the token in p; in (a) and (b). The fuzzy marking variable
o defines alternative output states R.S or R., S. The global fuzzy values might
be o(R,) = 0, o(R.S) = 1, o(R;) = 0. The local fuzzy variable p describes the
positional uncertainties of the robot and object in terms of their fuzzy membership
functions.

p(R,) and p(R.) are 6-D membership functions reéresenting the uncertainty in the
robot position. p(S) is a 3-D membership function representing the uncertainty
in the position of the strut on the table. p(R.S) is a 1-D membership function
with parameter z” which represents the uncertainty in the grasp point along the
strut. We assume o(p;) for this example is a fuzzy singleton, which describes the
uncertainty of event completion. For example, in Figure 5.1(a), o(R,, S, R.S, R.) =
(1,1,0,0), and in Figure 5.1(b), o(R,, S, R.S, R.) = (0,0.1,0.9,0.1). If the token
which represents an entity containing R carries a global fuzzy variable indiéating
the degree of completion of the task and under the assumption of m,(q;) as a fuzzy
singleton, then in Figure 5.2(2), o(R,) = 0, and in Figure 5.2(b), ¢(R.S) = 1,
o(R.) = 0.

As with other Petri net models, we would like to use the fuzzy Petri net

to analyze properties such as reachability, liveness, safeness, and reversibility. We

Wi all | |

L

(.

o [

Iw.‘ i i

£

107

define the reachable set of a fuzzy Petri net as the set of markings(consisting of fuzzy
marking variables) reachable from the initial marking after all feasible transition
sequences are fired. While it is complicated to analyze the properties of a fuzzy
Petri net with all three types of fuzzy variables, some basic cases can be treated to
yield useful properties. For an ordinary Petri net, all useful properties are defined
based upon the markings on the net. The fuzzy Petri net model adds the complexity
of local and global variables which must be considered. In this analysis, we will
consider first the problem where only local fuzzy variables exist in the fuzzy Petri
net model.

There may be three different cases according to the above assumptions. First,
firing rules follow from the ordinary Petri net, and local fuzzy variables are un-
changed. Second, firing rules follow from the ordinary Petri net, and local fuzzy
variables are changed. Third, firing rules are conditional upon input variables, ahd
local fuzzy variables are changed. The analysis for these three cases will be discussed

in Section 5.5.

5.3 State Representation of an FPN Model

Because there are three different kinds of variables associated with places and
tokens in the FPN, three different system states are defined and given below. In
these definitions, places are considered as parameters of system states, and from a

place, we can find the corresponding attached local and global variables.

Definition 5.2 Local fuzzy state S;: Si(p1,p2,---,Pn) = (p(p1), p(p2),-- -+ p(Pn)),
an n-tuple of local fuzzy variables in the FPN. p(p;) is either a membership function
in a universe of discourse, if this information is available, or, e, if this information

is not available.

Definition 5.8 Fuzzy marking state Spm:Sm(p1,P2,+++» Pn) = (2(p1), 0(P2)s - - -» €(Pn))s

an n-tuple of fuzzy marking variables in the FPN. g(p;) is a membership function

108

in a universe of discourse.

Definition 5.4 Global fuzzy state Sy: Sg(p1,p2,---, Pn) = (0(p1),0(p2), ..., 0(pn)),
an n-tuple of global fuzzy variables in the FPN. o(p;) is either a value of a token if

this token is existing, m(g;), or, e, indicating that no such information is available.

For the system state shown in Figure 5.2(a), Si(Ro, S, RcS, Re) = (p(Ro), p(S),
e,e); Sm(Ro, S, RS, Re) = (1,1,0,0); and S,(Ro, S, R.S, Be) = (0,C,e,e). For the
system state shown in Figure 5.2(b), Si(Ro, S, B.S, Re) = (e, p(S), o(R.S), p(R.));
Sm(Rs, S, RS, R.) = (0,0.1,0.9,0.1); and S,(Ro, S, R.S, R.) = (e, C, 1,0).

5.4 Reasoning Rules in the FPN

Three types of reasoning rules for f; of a transition ¢; in the FPN model are
represented as ri, ri, and rii. Specifically, we assume ¢; has k input places which
correspond to k variables, p;,, pi,, - .-, Pi,, at time N. And, ¢; has t output places

which correspond to ¢ variables, pi, pi, ..., pir, at time N + 1. Therefore,

N
(o), o), o)) = (0B), 00), plpy). (B1)

Ny, (). (5.2)

r(o(p), o@"), - o)) = (e ™), olp
(o (™), o (), ..., a(pI)) = (e (@), 0 (P D), o (R)). (53)

In using r, during firing of ¢;, the values of p contained in all input places are
evéluated and ¢; generates the values of p for all output places. The other two kinds
of reasoning rules are used in a similar way. The selection of reasoning strategies
for rules, such as using a rule base or functional relationships, is based on different
applications. The choice of whether to destroy the original values may also depend
on the specific application. In principle, these rules may be further generalized to
model interactions among the three types of fuzzy variables. For purposes of analysis

here, we will not consider those cases.

Wil W g mi u a4l Wil & L Wi il

——
.

b

|mu o

!
|

! Cm

P

|

[SR |

f

109

Figure 5.3: The input local variables and output local variables for a transition
of Case 1. Before ; is fired, p;, contains a token, 1 < u < k. After ¢, is fired, pi;
obtains a token, 1 < v < 5. All local fuzzy variables for this case are fixed.

In the FPN shown in Figure 5.2, the state changes are implemented by ¢; which

consists of r't, r%t, and r¥. These rules can be shown as: 7 (p(RSVY, p(SN))) =

(p(SN+DY, p(RSN+D), p(RIVHDY); #41(1,1) = (0.1, 0.9,0.1); and r%(0,C) = (C, 1,0).

5.5 Property Analysis for Several Basic Cases with Local Fuzzy Vari-

ables

Figure 5.3 shows a transition t; in the net which has k input places corre-
sponding to k variables, p;,, iy, - - -, Pi,- ¢ has s output places which correspond to
s variables, pir, pir, ..., Py The corresponding local fuzzy variables are represented
as piy, Piyy -~ Pix and pi, pir, ..., pi. For the sake of simplicity, we draw one-
dimensional membership functions to represent all these variables. The membership
functions for pi; (1 < v < s) prior to marking, may be thought of either as the func-
tion which existed from the previous marking, or as an a priori function assigned

to the place. Transition ¢; has a reasoning function f;. Two types of reasoning rules

110

for fi, vt and ry, are used for the following discussions.

5.5.1 Case 1: Local Fuzzy Variables Unmodified by Transitions

Case 1 can be described by two conditions: (1) p(p;) =Cj, 1 < j <n and Cj
is a fixed membership function; (2) for some transition ¢;, all input places have at
least one token at time N, i.e., g(p,(y)) >1,1 5 u S k.

If the above two conditions are satisfied, then ¢; is enabled. The resulting rule
t;

T, can be written as

(e, o), .., o)) = (At), Alpir), - - -, Alpiy)),

and

A(P.':’):l, 1sv<s.

Then we can obtain g for each output place as
N N
opl,) = opi)) + Alpy), 150 <.

and

oM = o™ -1, 1<ugk

The membership functions for all local fuzzy variables are represented by the solid
curves in Figure 5.3, and these curves are unchangeable when the system is executed.

Therefore, each time when we reach and fire transition t;, we expect the same
input local variables and output local variables and the output marking only depends
on the input marking of ¢;. This case can be considered as the same as the ordinary
Petri net firing mechanism, with associated fixed local fuzzy variables. The following

properties can be seen for this type of FPN.

Theorem 5.1 Assume a fuzzy Petri net of Case 1 is mapped from an ordinary Petri
net by assigning to each place a fixed local fuzzy variable, and assume the reasoning

function is the same firing rule as in ordinary Petri nets. The resulting fuzzy Petri

L

g Wil ®l 1T | v

| (/A IR (NP | L'

wyup
i

1
l b e

-y
"

[
o«

"

111

net is live, safe, and/or reversible if and only if the original Petri net is live, safe,

and/or reversible.

Proof: All these properties are dependent upon the firing mechanisms of transi-
tions in the net. Because the enabling conditions of transitions only depend on the
markings of input places, the properties of liveness, safeness, and reversibility are
unchanged while the fuzzy Petri net is mapped from an ordinary Petri net or the

fuzzy Petri net is mapped back to the ordinary Petri net.
Q.E.D. O

5.5.2 Case 2: Local Fuzzy Variables Modified by Transitions

Case 2 can be described by two conditions: (1) The output local variables of

a transition ¢; may be changed after ¢, is fired, i.e., -

(N) (N) (N)

(o), o), -, p(B)) = (B),

N N
(B), 00 D)),

where N and N + 1 represent the different time slots before and after ¢; is fired;

(2) for some transition t;, all input places have at least one token at time N, ie.,

oM >1,15ugk

If the above two conditions are satisfied, then #; is enabled. The resulting rule

ri can be written as

P (o(pf), e(), -, 0P0)) = (Alpig), Alpy), - - Alpy)-
Similarly,

oY) = o) + Alpy), Alpy) =1, and 1Sv<s.

and

N N
e@£“5—9@£5 , 1<u<k

The membership functions of all local fuzzy variables are represented by dotted

curves in Figure 5.4. These curves may be changed during the execution of the

112

Figure 5.4: The input local variables and output local variables for a transition t;
of Case 2. Before t; is fired, p;, contains a token, 1 < u < k. After ¢; is fired,
pi, obtains a token, 1 < v < s. The output local fuzzy variables for this case are
changed.

system. The generation of the output local variables are dependent on the input
local variables and the rule r.

Case 2 is more general than Case 1. For the robotic assembly task in Figure
5.1, Case 1 fixes the uncertainty associated with each place, and thus the errors this
case can model are very limited. For case 2, the configuration R.S depends not only
on transition ¢; but also the initial configuration p(R,) and p(S). The following

properties can be found for this type of fuzzy Petri net.

Theorem 5.2 Suppose a fuzzy Petri net is mapped from an ordinary Petri net by
assigning to each place a changeable local fuzzy variable and the reasoning functions
are the same as the firing strategy as defined in ordinary Petri nets. The resulting
fuzzy Petri net is live, safe, and/or reversible if and only if the original Petri net is

live, safe, and/or reversible.

Proof: The proof is similar to Theorem 5.1 because the changeable local fuzzy

ali .

moow W W R EE

B

(iR

m\v rm
b

£

113

variables still have no influence on deciding the marking of the net.

Q.E.D. O

5.5.3 Case 3: Transition Firing Depends on Input Local Fuzzy Variables

Case 3 can be described by two conditions: (1) The output local variables of

a transition ¢; may be changed after ¢, is fired, i.e.,

(o), p(B)s -0 () = (p(B), (P 1), s o0 1)),

where N and N + 1 represent the different time slots before and after ¢; is fired;
(2) for some transition ¢;, all input places have at least one token at time N, i.e.,

oM >1,1<u<k

If the above two conditions are satisfied, then ¢; is enabled. If we fire ¢;, then

B, o8M), . o), p(E), p(B12), e = (A), Alpiy), - -, Alpir)),

and

Alps) € {0,1}, 1<v<s.

Then we can obtain g for each output place as
(N
opy ™) = o) + Alpy), 1Sv s,

and

of (N+1))

o(ps, o) =1, 1<u<k

The membership functions of all local fuzzy variables are represented by dotted
curves in Figure 5.5. These curves may change during the execution of the system.

For this case, the output local fuzzy variables are dependent on input local
fuzzy variables and the fuzzy reasoning rules, and the output markings after ¢;
is fired are dependent upon the input local fuzzy variables, the input markings,

and the firing functions. Therefore, even if all input places have tokens, after ¢; is

114

Figure 5.5: The input local variables and output local variables for a transition t;
of Case 3. Before t; is fired, p;, contains a token, 1 < u < k. After ¢, is fired, some
pi, obtain a token, 1 < v < s. The output local fuzzy variables for this case are

changed.

fired, it does not necessarily guarantee that all output places get more tokens. One
application of this type of fuzzy Petri net is sensor-based selection for on-line robotic
operations. After a sensor is used to verify a system state, the following operation
may be local error recovery, global error .recovery, or continuation of the execution
of the planned task sequence, all of which depend on the token in one output place
of a sensing transition.

The properties of this type of fuzzy Petri net are not provable in general
because of different reasoning strategies which decide the availability of tokens in
output places dependent upon input local fuzzy variables and the rule ry. Some
useful subclasses of this case are worthwhile to investigate. We first give the following

definition:

Definition 5.5 A mutually exclusive transition #;: (1) if ps;, piy, ..., and p;; are s

output places of t;; (2) After ¢; is fired, A(o(pi)) =1 or Ae(p#)) =0,1<j < s,

e

R

i

Ll & LRI | Rl

K

Wi wil

LA

E ™
T

s

o

115

and D = U;{ps : Ale(pi)) = 1}, D' = U;{ps; : Ale(p)) =0}, Q) D# 8, D' # 0,
DND =0, and DUD = Ui, {ps}.

The following theorem provides the condition for safeness for a class of fuzzy

Petri nets.

Theorem 5.3 Suppose a fuzzy Petri net is mapped from an ordinary Petri net
by assigning each place a changeable local fuzzy variable. The reasoning functions
and the input local fuzzy variables decide the output marking and the output local
fuzzy variables. If one and only one mutually exclusive transition #; exists in the
net and other transitions satisfy the conditions described in Case 1 or Case 2, and

the original Petri net is safe, the resulting fuzzy Petri net is also safe.

Proof: Because after ; is fired, not all output places will receive tokens, therefore,
for any following transition sequences, the places in the net will get fewer or the
same number of tokens as in the ordinary Petri net. The resulting fuzzy Petri net

will be safe if the original ordinary Petri net is safe.

Q.E.D. O

Definition 5.6 MEOQO(mutually exclusive output) subsets of a mutually exclusive
transition ¢;: For all feasible transition sequences from the initial marking and for all
possible input local fuzzy variables available for ¢;, we assume there are L different
partitions of the set of the output places of t;: Dy, D2, ..., Dr. If the follow'ing
conditions are satisfied: (1) D;ND; =0, i #jand 1 <i,5 < L; (2) U, D =
Uj=1Pi;; (3) At any time after ¢; is fired, A(py) = 1, for all p;, € D; and A(pir) =0

forall py ¢ D;,1 <v<sandl<j< L, then Dy, Dy, ..., D are called MEQO

subsets of t;.

Figure 5.6 shows a mutually exclusive transition with four output places and

four examples of possible output markings. Figure 5.6(a), 5.6(b), and 5.6(c) show

116

.-

4 -~
,’Subset 1 \\

+~ Subset T~

P3y

- -
- -

. -

\§ubset 2// ‘\\ Subset 3,/'
(a) MEOQ subsets: Subset 1 and 2. (b) MEO subsets: Subset 1, 2, and 3.

T~
‘ Subset 17\
\ A

(¢) MEO subsets: Subset 1 and 2. (d) Non-MEOQ subsets.

Figure 5.6: Some examples of MEQ subsets for a mutually exclusive transition with
four output places.

I
i

"
Ik

fi i

117

MEO subsets. In Figure 5.6(a), L = 2, D1 = {ps,ps}, D2 = {ps, ps}, which indicates
that sometimes after t, is fired, o(p3) = o(ps) = 1, and o(ps) = o(ps) = 0, and
sometimes g(ps) = o(ps) = 1 and o(p3) = o(ps) = 0. No other possibilities may
appear for p. In Figure 5.6(b), L = 3, D1 = {ps}, D2 = {ps,ps}, and D3 = {ps},
and in Figure 5.6(c), L = 2, D, = {p3,ps}, and D; = {p4, ps}. Figure 5.6(d) shows
non-MEO subsets where o(ps) = 1, o(ps) = 1 and g(p3) = 1, o(ps) = 1 are both
possible after firing ¢;. The following theorems define a class of fuzzy Petri nets
which guarantee the properties of liveness, safeness, and reversibility.

Before we discuss the following theorem, we give definitions of the addition of
two Petri nets and subtraction of a subnet from a Petri net. Similar operations on

Petri nets are used in synthesis techniques of Petri nets[53].

Definition 5.7 The addition(“+") of a net Ny = (P;,T1,1,51) and a net Ny =
(P, Tz, a2, 32): Ny + Ny = (PLU P, T1 UT2, o, B) where o = U;;{(pi ;) }, (pirt;) €
a1 Uz, and 8 = U;{(t;, pi)}, (45,p) € BrU B

Definition 5.8 The subtraction(“-") of a subnet N’ = (P',T",o’, 8’) from a Petri
net N = (P,T,a,8): N=N' =(P-P,T-T4",3"), where o' = Us; {(pi t5)},
(pH) €a, ﬁ” UtJ{(J’Pi)}: (tj’pi) € :3: and pi € P- P,r tj €eT-T.

Theorem 5.4 If a fuzzy Petri net is obtained in the same way as described in
Theorem 5.3, and t; has MEO subsets Dy, D;, ..., DL, and the following conditions
are satisfied: (1) there exist L number of subnets N, V2, ..., N and A contains
Di, 1 Si<L;(2) N=(Thy Ni= M), N= (T M= M), ooy N = (Ziy Ni— VL)
are live; (3) N;(\N; =9, i # j and 1 <4,j < L. Then this fuzzy Petri net is also

live.

Proof: Suppose at any time when ¢, is fired, the places in D; always obtain tokens,
then N — (XL, N; — V,) is live. In other words, the transitions contained in N —

(TL, N; = Ny) are live. Similarly, if we assume D; is always guaranteed to obtain

118

s Ps
1 { o
i A

Figure 5.7: A fuzzy Petri net with one mutually exclusive transition ¢;. After t; is
fired, p; and p3 or ps will receive the tokens based on the local variable available in

131
p1 and .

tokens after ¢; is fired, then the transitions in N — (%, N; — ;) are live. Because

after ¢; is fired, all D; may contain tokens, therefore, all transitions in the net are

live. The fuzzy Petri net satisfying the above conditions is thus live.

Q.ED.O

An example for a fuzzy Petri ﬁet with one mutﬁally exclusive transition ¢, and
MEQ subsets D; = {p3,p3} and D; = {p4} is shown in Figure 5.7. The subnet N; has
the following structure: Py = {p2,ps,ps,p6}, T1 = {t2,t3}, a1 = {(p2,t2), (p3, ta)},
B1 = {(t2,ps),(t3,p6)}. The subnet N, has the following structure: P; = {p4, pr},
T; = {t4}, 2 = {(p4,ta)}, and B2 = {(t4,pr)}. N1 contains D; and N, contains D;.
From Theorem 5.4, we can prove that this fuzzy Petri net is live.

The property of reversibility is important for modeling error recovery strategy
using Petri nets. When a fuzzy Petri net is used, reversibility implies that the

marking is restored for the initial state, and some local fuzzy variables may be

Wi W Wi omm

4. B %l i W «|n m W M W

.

1

"

oL

[T

il

119

changed. The following theorem proposes the condition for a fuzzy Petri net to be

reversible.

Theorem 5.5 If a fuzzy Petri net is obtained in the same way as described in
Theorem 5.4 except that subnets N — (T, N; — Ny), 1 <1 < L, may or may
not be live, N — (L, N; = N), N = (ZL, M= N,), ..., N=(TE, N, = Np) are
reversible, and N;, N;, ..., Ny contain no token in the initial marking, then this

fuzzy Petri net is also reversible.

Proof: The proof is straightforward following the same strategy as discussed in

Theorem 5.4.
Q.E.D.OC

If there are more than one mutually exclusive transition, ¢,,, t;,, - . ., ¢;,, existing
in the fuzzy Petri net, we can generalize the above discussions to the following

corollaries:

Corollary 5.1 Suppose a fuzzy Petri net is mapped from an ordinary Petri net by
assigning each place a changeable local fuzzy variable. The reasoning functions and
the input local fuzzy variables decide the output marking and the output local fuzzy
variables. If more than one mutually exclusive transition, t;,, t,, ..., t;,, exists in

the net and the original Petri net is safe, the resulting fuzzy Petri net is also safe.

Corollary 5.2 If a fuzzy Petri net is obtained in the same way as described in

Corollary 5.1, and ¢;,(1 < u < r) has MEO subsets D;, , Di,,, ..., D;“L. And

the following conditions are satisfied: (1) there exist uz number of subnets N;
N,‘,‘g, ceny Ni"z. and N,'J contain 'D,'J, up < j<ug (2) N- (Z;‘éul N;
N = (T5E, M, = Ni,), -0 N = (T35, N,

4

uy’

I Niu,)’
- Ni..L) are live; (3) N, NN, = 0,

P # q and u; < p,q < ug, then this fuzzy Petri net is also live.

120

Corollary 5.3 If a fuzzy Petri net is obtained in the same way as described in
Corollary 5.2 except that the subnets N — (7%, Ni, —N;,), i £ 1 < up may or may
N; - N;

not be live. N — i)y N— (55, Nj=Niy,), . N - (Zitu, —Niuy)

(J-u1

are reversible, and N;,, N, ..., N, contain no token in the initial marking, then

u

this fuzzy Petri net is also reversible.

5.6 FPNs with Global Fuzzy Variables: Example of Task Sequencing

An application of FPNs has been discussed for the task sequencing problem([12
20]. When a robotic assembly system is modeled by a fuzzy Petri net, all feasible op-
erations in thé system are represented by transitions, and all possible objects, such
as components, devices, subassemblies, and assemblies are represented by places.
Given an initial marking and an expected final marking, a task sequence planning
problem is equivalent to the problem of s'equencing transitions, which usually oc-
curs in an off-line mode. In this approach a global fuzzy variable is introduced to
represent ‘degree of completion’ of the task while rﬁa.intaining the precedence of key
operations (‘key transitions’).

A reachability strategy[16, 89] can be used to search for sequences in an or-
dinary Petri net. For sequencing transitions, while maintaining precedence among
those properties that are changed durlng the process, a prime number marking al-
gorithm was proposed[12, 14, 20, 21] to generate global fuzzy values of a variable
o(p;) such that precedence is preserved. In this case, the fuzziness of the net only
shows up in tokens, not places. |

In the example shown in Figure 5.2, if we assume this net is an FPN carrying
o, the initial marking using o values is S, = (0,C,e,e), and the final marking
is S, = (e,C,1,0). Places py, p3s, and ps contain the same kind of token, which
indicates whether the task is completed, but with different values, 0 and 1.

For other examples, there may be k colors of tokens, ¢, ¢z, ..., k. For

NI Wy =i W Wi W Wm0 mmn W i 2

]

miiy

L

I

I‘ It

{

121

color ¢;, an independent subsequence for reaching the global task is ¢;,, ti;, .., ti, -

The transitions in this subsequence may not be a consecutively enabled transition
sequence. However, to correctly execute the global task, all subsequences should
be completely executed with a correct order. When using this strategy to search
or plan a transition sequence from the net, time and space will be saved compared

with the methods used in ordinary Petri nets.

5.7 FPNs with Local Fuzzy Variables: Examples of Robotic Sensing
5.7.1 Local Fuzzy Variable for Sensor-Based Error Recovery

Figure 5.8 shows the example of local fuzzy variables for the robotic system
from Figure 5.1. The position of the strut on the table is represented by a fuzzy
variable p(S). The position of the robot gripper is represented by a fuzzy variable
p(R).

Figure 5.8(a) is a correct positioning of RS, but in Figure 5.8(b), an incorrect
configuration is shown. This information of the real state of RS is not known prior
to execution and a sensor will be used on-line to verify the state.

We assume the next operation of the robot is t;, a move operation, as shown in
Figure 5.9 (this is a simplified extension of Figure 5.2 because we omit the possibility
of ¢; resulting in R. and S, and we don’t distinguish R. and R,. This simplifica-
tion can also be implemented by using a sensor after t;, so that there will be no
vagueness between R.S and S, R. after ¢, is fired.). This may fail if the robot is
not holding anything. An appropriate decision should be made to evoke an error
recovery sequence in case the grasp operation fails.

We assume the membership function for p(RS) is a 2-D membership function
as shown in Figure 5.10. To separate the 2-D membership function into two possible
future executions, move or error recovery, we use a sensing operation to verify the

state after the grasp operation is done. A sensor separates the 1-D membership

122

Figure 5.8: A scenario of robot-strut assembly in Figure 5.1. (a) shows that the
grasp position is above the strut and (b) shows the gripper has missed the strut.
The dotted circle displayed on the table plane is a possible range the robot gripper
may reach.

TR TR (A HA . il s s om N

| &l BN

it

il

-
[

m\m m ‘IWIV
JATNTA

l‘ ymop

{18

‘ |

Figure 5.9: A FPN representation for a grasp and move operation for the robot.
RS’ is a specified state the move operation is supposed to reach.

yllzo

Membership Function

z"(membership grades)

" " "
2"(zg, Yo

z"(on strut)

- -
- -
- - - -

-
-

Figure 5.10: A distribution for the membership grades of the position the robot
gripper reaches to grasp the strut. The darkened curve is a 1-D membership function
where the robot is assumed to reach the strut.

124

Figure 5.11: A modified FPN which includes an error recovery sequence. If the
sensed value does not fall near the z” axis, an “ungrasp” transition, for a robot to
move to another temporary position(not necessarily the original position) and then
grasp the strut again, is fired. Note that grasp® may not be the same as grasp. The
error recovery sequence is initiated by the fuzzy reasoning rule in f; attached to
transition ¢;.

function from a 2-D membership function as shown in Figure 5.10. If y” =~ 0,
the ‘darkened’ membership function describes the resulting uncertainty in z” of
the grasped strut. If y” # 0, an error recovery sequence should be followed to
disassemble RS. The fuzzy reasoning rules at t; models the resulting decisions.
On-line execution with an actual sensor value requires a fuzzy control decision rule
which executes the appropriate sequence. A modified fuzzy Petri net based on the

above discussion is shown in Figure 5.11. The error recovery sequence is initiated

by the fuzzy reasoning rule in f; attached to transition ¢,.

5.7.2 Modeling Sensing Operations as Mutually Exclusive Transitions

During the execution of a robotic system modeled by a fuzzy Petri net, the
exact positions of the arm or the state of the object being processed are never
known exactly because of the approximation of the controller and the uncertain

environment. A sensor or multiple sensors are used to verify and validate on-line

C]

Fir W

!l‘

[

¢

. \Nli |

[

o

(

(

I

125

approximate information so that the whole operations space can be divided into
several mutually exclusive ranges. Sensors may also have errors and approximation
and fuzzy reasoning rules can be used to reduce the fuzziness caused by uncertainty
of the partial results. The fuzzy marking variables and the output local fuzzy
variables are obtained through reasoning at the sensory transition.

The fuzzy Petri net corresponding to a mutually exclusive transition ¢, with
three output places is shown in Figure 5.12. t; is modeled as a virtual sensory
transition which will verify the state of p; and obtain the corresponding output
mutually exclusively. From this example, we see that when a local fuzzy variable in
p, is obtained, it is input into ¢; for reasoning about the token in an output place.
The reasoning function r¥! consists of three steps: (1) intersect input fuzzy variables
with the expected membership function residing in p, and obtain the intersection
area or the highest membership degree, (2) intersect input fuzzy variables with the
expected membership function residing in p; and obtain the intersection area or the
highest membership degree, (3) intersect input fuzzy variables with the expected
membership function residing in p; and obtain the intersection area or the highest
membership degree. Then, from these three partial results, we can get a maximum
value corresponding to a certain place p;, 2 < i < 4. In this example, p3 has
the maximum intersection area as shown by the shaded area in Figure 5.12(a).
Therefore, a token is put in p; after the reasoning process ends as shown in Figure
5.12(b).

In a real system, a sensing operation may direct the following transition se-
quences to continue the execution, locally recover from an error if that error is
locally recoverable, or globally recover from an error if that error is not locally re-
coverable. Each sensing operation is a mutually exclusive transition, and its output

places constitute MEQ subsets.

126

) [fL
L

Y

Sensing
Transition

Reasoning Process

(a) Fuzzy reasoning of a mutually exclusively sensing transition.

P2

h Sensing
Transition

(b) The resulting token in place p3

Figure 5.12: Fuzzy reasoning in a fuzzy Petri net for obtaining a token in an output
place mutually exclusively.

‘rw i

ulll 11

(LR
b 0l

(L)

v

L {

!

5.8 Conclusions

In this chapter, we have proposed a generalized definition of the fuzzy Petri net
using three different types of fuzzy variables: local fuzzy variables, fuzzy marking
variables, and global fuzzy variables. Local fuzzy variables are examined in detail,
and are used to reason about parameters associated with places. Fuzzy Petri nets
are shown to have advantages over ordinary Petri nets to model a system which has
vague, random, and approximate information. Sensors can be used to handle uncer-
tainty of occurrence of events and reduce the dimension of membership distribution.
Sensor-based verification for states and sensor-based error recovery strategies can
be incorporated into the FPN model of the system. FPNs are also shown to be a
good model for off-line sequencing and on-line reasoning about execution.

Properties of these nets have been defined for specific cases of interest. An
example of the application of these properties is modeling and analysis of a sensor-
based robotic system. Uncertain sensory input data can be handled and sensory
transitions may be modeled as mutually exclusive transitions. Only a subset of the
output places can receive tokens after the transition is fired, the other placesv will
not receive any tokens.

Fuzzy values as defined here are membership functions in a certain universe of
uncertainty. Sometimes, we may want to know the crisp values for some tokens or
the crisp state of the system. In this case, a fuzzy defuzzifier[63, 64] is necessary to
defuzzify the fuzzy values before it is output to the controller. Similarly, the input
values to the FPN model may also be crisp values, and a fuzzifier[63, 64] is needed
to turn crisp values to fuzzy values. Also, different reasoning strategies may be used
for different transitions in the net. |

Fuzzy Petri nets are potentially useful to model many different types of dis-
crete event systems with uncertainty. Global fuzzy variables may be used to plan

operations sequences for robotic or manufacturing systems. Local fuzzy variables

128

may be used to reason about sensor-based error recovery sequences. Fuzzy marking
variables impose probabilistic conditions on the system marking. The interrelation-
ship among these fuzzy variables is a topic which leads to additional research issues.

In practice, other forms of non-fuzzy probabilistic reasoning could be used within

this framework

An important issue related to th:s research is the ch01ce of rules for tfansmons
Expenments can be done to learn rules. A fuzzy Petn net will be robust only after
many experiments and modlﬁcatlons of the reasoning structures A neural network
may be useful to represent these firing rules. This research also has important
implications for knowledge representation, knowledge reasoning, modeling of expert

systems, and other Al applications.

| (N

T q W e W

i | DI | &l I [N all

mii

[XERK
Wl

¢

[!

[

CHAPTER 6
TASK SEQUENCE PLANNING USING FUZZY PETRI NETS

This chapter discusses the problem of representation and planning of operations
sequences in a robotic system using fuzzy Petri nets(12, 17, 18]. In the fuzzy Petri net
representation, objects whose internal states are altered during a process are termed
‘soft’ objects, and the process steps where alterations may occur are labeled ‘key’
transitions. A correct sequence is defined as a sequence which is feasible, complete,
and satisfies precedence relations. In this formulation, the internal state of an object
is represented by a global fuzzy variable attached to the token related to the ‘degree
of completion’ of the process. All correct operations sequences must satisfy process
sequence constraints imposed by fuzzy transition rules. The correct precedence
relationships and the characteristics of completeness for operations in all feasible
sequences are guaranteed by the prime number marking algorithm which marks
the fuzzy Petri net. The use of fuzzy transition rules in this application simplifies
the representation and search problems for task planning where correct sequences
do not depend on exact knowledge of internal states, but only their precedence

relations.

6.1 Introduction

The objective of task sequence planning for a robotic workcell or manufacturing
system is to efficiently represent all feasible and complete task sequences with correct
precedence relations and to be able to choose among them. A sequence of the
shortest length or other optimality criterion may be selected from these correct
sequences. In previous work([11, 13, 15}, it has been shown that the AND/OR net
representation of an assembly system may be mapped to an ordinary Petri net with

specific properties such as safeness, 1-boundedness, liveness, and reversibility. In

129

130

this chapter, we introduce a fuzzy Petri net mapping instead of the ordinary Petri
net mapping to represent a system which includes some soft objects, e.g., objects
which change their internal states d\iring the task. A state of the system is thus
composed of a set of membership functions for the completion of the global task
on all feasible objects. Fuzzy transition rules implement the sequencing constraints
required to direct the process to the final global state of the system.

AND/OR graphs([47, 48] have been used in assembly task planning to represent
and search all possible assembly sequences. The AND/OR net[11, 13, 15] extends
the AND/OR graph representation to incorporate system mechanisms and devices,
and defines an Internal State Transition(IST) operation which modifies the internal
state of an object. The AND/OR net is generated based on the descriptions of
objects and all feasible geometric relationships among them, and it is used to plan
operations sequences for geometric manipulations including assembly, disassembly,
grasping, and robot motions. In [11, 16], we showed that an AND/OR net could be
mapped to a Petri net, and this Petri net can then be decomposed to lower level
nets[13, 15, 19] while retaining properties of liveness, 1-boundedness, safeness, and
reversibility.

In this chapter, we expand the domain of the Petri net mapping as a rep-
resentation of a robotic workcell, by defining fuzzy internal states of objects and
using fuzzy transition rules in the Petri net to impose precedence constraints on key
operations.

An object in the system is defined as a single component, a subassembly of
several éoffiiﬁgﬁénts, or a complete ééeﬁbly. A soft object is dZﬂned to be an object
which includes at least one internal state variable. Similarly, a hard object is defined
to be an object which is not a soft object. In this chapter, the internal state variables
of soft objects are described by fuzzy values of tokens, and a prime number marking

algorithm is used to map an ordinary Petri net to a fuzzy Petri net in a manner which

{

W i

Nl m oW WM 4

Wil

i

IWIw | 'W\W‘il\m\

|y TR L

i wi E

CHIN

e | A

{

l

3

il

Ll
idh

b

m
"

i) i8

i

UL

e

[l

W Vel mEml Qmme o TR

niaa

131

guarantees consistent sequencing of operations. In the resulting fuzzy Petri net, each
transition has an associated fuzzy reasoning rule and an associated weighting factor
which evaluate the resulting values in the output places of this transition based on
the fuzzy values of tokens in its input places. Transitions which cause the changes
of fuzzy values of tokens for objects, are defined as key transitions and must be
included into all feasible and complete task sequences.

One difficult problem in choosing feasible task sequences is to order the cor-
rect precedence relationships among all important events or transitions. Using prime
number marking in modeling the system, the weighting factors as well as the initial
tokens and final tokens are chosen for all soft objects and hard objects so that an
assigned precedence relationship will be automatically followed, and all sequences
which incorporate incorrect precedence relationships will be recognized and dis-
carded. The prime token values of soft objects can be interpreted as the degrees of
certainty of completion for these objects.

In our recent work[17], a definition of the generalized fuzzy Petri net was
given which incorporated three types of fuzzy variables: local fuzzy variables, fuzzy
marking variables, and global fuzzy variables. Property analysis associated with
some typical cases of fuzzy Petri nets was given[18]. In this chapter, we use the
fuzzy Petri net model which carries only global fuzzy variables for task planning,
and use it to represent and reason about all feasible, complete, and correctly ordered

task sequences for a robot workcell.

6.2 State Representation for Task Sequences

A robotic or automated manufacturing system consists of many different kinds
of components such as robots, sensors, fixtures, handling mechanisms, and parts.
Different tasks may be assigned to and accomplished by the system. All devices must

be coordinated to insure successful completion of a task goal through a sequence of

(an [t
il i 0

1 -
b

-

I
il b

‘u TR

I

132

feasible operations. This on-line coordination may be managed by a subset of the
system Petri net which couples transitions to on-line execution of desired operations.

From the task sequence planning point of view, the system must follow a
partially ordered sequence of intermediate states to reach from the initial state to
the final state[48], where state is defined as the vector of the states for all components
in the system. We assume a system consists of n components Cy, Cq, ..., Cn, where
C; represents the :th component. We use s;(C;) to represent the state of component
C; at time j, where we also assume a discrete time representation and j is thus
zero or a natural number. For the moment, we assume that each component may
occupy a fixed number of feasible states in the range 0 to N;. The integer vector
representation for the state of the system is S; = (s;(C1) s;(C2) ... s;(CH)T,
0 <j<M,and M +1 is the maximum number of all feasible states the system
may occupy. In this approach, a partially ordered list of state vectors may be used
to represent a task sequence.

An alternative representation for the task sequence is based on the defini-
tion of specific types of state transitions. An operator will change the state of
the system by making a set of components change from one substate to another
substate, where a substate is defined as S'; = (5;(Cy,) 5;(Cp,) --- 3;(Cp))T and
{3;(Cp), 35(Cpa)s +v» 55(Cp)} € {5i(Ch), s;(C2), .., $;(Cn)}. We introduce the
concept of substate because many tasks may be thought of as functioning on several
objects, i.e., a subset of the objects in the system. Three kinds of tasks, Ty, T2, and
T3, are defined as follows: '

(1) Assembly: One set of components or subassemblies are combined with or

put in geometric contact with one or more other sets of components or subassemblies.
Ti(0i,, Oiyy .oy 0i) = {{Csy, Cisy --+, Cit}h (6.1)

where

0, = {CI, ¥, ..., c},

133

Oi, €{Ci, Ciy ..., Ci}y 1<k <y, and
0i,,N0i,, =0, 1<k ka<u

(2) Disassembly: A subassembly or assembly is separated into a set of compo-

nents or subassemblies.
T2({Cix’ C{,, vty C.‘,}) = {01'1’ OJ':’ AR Ojl}’ (6-2)

where
0;, = {CPY, o, ..., clmy,
O;, Q{C,‘l, Cipy -+ C.}, 1<k<, and,
05, [0j, =0, 1< ki, ke <1

(3) Internal State Transition: The internal state of a set of components is

modified by changing the internal state of a single component in this set, or byr

changing the relative geometric positions among the components of an assembly, or

by modifying a property of a single component in a compact set of components.
T3(0,) = Oy, (6.3)
where
Op = {s(Cy)s s(Ciy), ---y 8(Cy,), s(Cipyy)s ooy 8(Chyy)s --vv 8(Cit)},

Oq = {S(Cl'x)v S(Ciz)v R S’(C{,), 3’(Cia+:)7 -"13’(Ci,+d)1 Ty S(Ciz)}v,

and

OP - Oq = {S(C,’,), S(Ci.-n)v R ’S(Ci,+d)}:
Oq - OP = {S'(C,‘,), SI(CI',“)’ e vsl(cis+d)}'

As the number and complexity of the system substates and their interactions

increases, the task representation may be further simplified by defining a geometric

T NI AR FTINTR [N T (NIRRT 1 i Wi & s | FIN (T i {

r

Lx

ot

e

T 1]
(} Lhii

|

r

“

a.

{!

134

state vector, which separates geometric sﬁate relations from internal state variables of
individual objects. The geometric state vector is a binary vector where the elements
represent all feasible geometric states which can occur during the process. Using
this representation, a set of mathematical functions can be defined for task planning
and execution, and transitions from one system state to another system state may
be defined based upon the properties of vectors. For each single component Cj, the
corresponding element state is e; = s(C;) and for each feasible set of components
Ci, Ci, ..., Ci,., the corresponding element state is e; = s({C,,Ci;,...,Cin })-
The geometric state vector is thus GS = (e; ez ... e.)T where e; is either 0 or 1.
This vector occupies the same dimension for the same system at any time. We will
show in the following discussion how this representation can be generalized to a
vector of token values which carries the degrees of completion for the global task.

Figure 6.1 shows an example of a robotic system with two parts, one robot,
and two processing machines. In this system, the robot prepares and then inserts
the peg cylinder(P) into the hollow cylinder(C) to form a new cylinder assembly.
In one feasible, complete, and correctly ordered sequence, the robot first picks up
the raw peg cylinder, moves it to the cutting machine for cutting, then transfers
it to the lubricating station prior to insertion. The corresponding AND/OR net
representation for this system is shown in Figure 6.2.

In this AND/OR net, we use AND arcs to represent all feasible assembly or
disassembly operations. For example, RPC is connected with PC and R by an
AND arc, which means RPC can be disassembled to PC and R, and PC and R can
be assembled and form RPC. An internal state transition operation is represented
by a thick line connecting two corresponding nodes in the AND/OR net. The off-
line and on-line selection of the assembly, disassembly, or internal state transition

operation is based on the system state, i.e., the matching of the precondition of

each operation with all element states. AND/OR nets display all feasible objects

135

Lubricating
Machine

Robot

Hollow Cylinder Peg

Cutting
Machine

Figure 6.1: A peg-cylinder assembly system.

RPL

e

LUB CUT

Figure 6.2: The AND/OR net representation for the peg-cylinder assembly system.

| [T | i [

i wWn s . om0 s Wm0 I W .

I

WE W

L
"

i

A

) | A

LT

|8

LI

"

{

"

[

136

Figure 6.3: The ordinary Petri net mapped from the AND/OR net in Figure 6.2.

and all possible geometric relations among objects, and the geometric constraints
among on-line operations. The Petri net mapped from the AND/OR net[11] for this
example is illustrated in Figure 6.3. The mapping is based on an algorithm which
decomposes each arc in the AND/OR net to two transitions in opposite directions
based on feasibility criteria. The resulting Petri nets guarantee the properties of live-
ness, 1-boundedness, safeness, and reversibility under the assumption of transition
feasibility.

The geometric state vector for this assembly scenario is

GS = (s(R) s(P) s(C) s(L) s(M) s(RP) s(PC) s(RPC) s(RPL) s(RPM) s(LUB) s(CUT))".

The value for any element is either 1 or 0 which corresponds to whether a single

137

component or subassembly is existing in the system at this time. Many different
operations sequences could be searched from this Petri net task representation. If
we give this Petri net an initial state vector (1 1111000000 0) and a
final state vector (10011010000 0), a sequence which is t:,(R, P — RP),
t12(RP,C — RPC), t;3(RPC — R, PC), will be selected as the shortest sequence
from all possible sequences. This sequence is actually not a complete sequence
because it just picks up the raw peg and inserts it into the hollow cylinder. A
new strategy will be necessary to generate only feasible and complete sequences
which satisfy the ordered process constraints. Any feasible sequence must include
the partial ordering: CUT — LUB — INSERT. The next section introduces
an approach to fuzzy marking of the net which implements this process sequencing
constraint. In this example, one internal state variable for the peg is its diameter.
During the cutting operation, this parameter will be changed. The other internal
state variable is the surface lubricating state of the peg. These internal states will
be mapped to a global fuzzy variable membership function and carried by the tokens

flowing in the net.

6.3 Fuzzy Sets for Modeling System State

Fuzzy set theory[119] has been applied to fuzzy production rules[86], fuzzy
control[72], fuzzy expert systems[65], sensor fusion[107], pattern recognition[57],
and other interesting areas. Fuzzy logic and its applications provide an effective
means of capturing the approximate, inexact nature of the real world. In this éhap-
ter, this methodology is used to describe the imprecise characteristics of processing
and assembling operations in a robotic assembly or material handling system. The
use of fuzzy reasoning rules in this application simplifies the representation and
search problems for task planning where correct sequences do not depend on exact

knowledge of internal states, but only their precedence relations.

L

[

E Ew

I

[

FORR.

LINR]

(

‘ i
.

myop
I b

Rl

138

6.3.1 Fuzzy Sets

Fuzzy sets have been used as a broad conceptual framework for dealing with
uncertainty and information. For the universe of discourse X, which contains all
the possible elements of concern for a particular application, the crisp set is defined
to dichotomize X to two groups: members(those that belong to a subset A) and
nonmembers(those that certainly do not). Because of vagueness in dividing members
of the class from nonmembers, a fuzzy set is introduced by assigning to each possible
individual in X a value representing its grade of membership in the set. For a
garment handling robotic system[9, 101, 102], during the process of turning a piece
of cloth into a pair of trousers, the grade of membership of the object, trousers,
would gradually increase. Therefore, this grade corresponds to the degree to which
the partial product of trousers is similar to the concept of the trousers. Larger values
denote higher degrees of membership of the system object. A global fuzzy state of
the system is thus defined as a mapping from the objects in the system to a set
of membership functions defined for each object, or subsets of objects. The formal
definition of the global fuzzy state will be discussed in the following subsection.

In a manufacturing system, ‘degree of completion’ is one such membership
function which characterizes the objects in the system which will be discussed in
this chapter. Other such global membership functions might be test validation which
would monitor the mutual functional suitability of a set of components as they move
through a process, or tolerance compatibility which would track tolerance relations
as the process proceeds.

For a robot or manufacturing system, the crisp universal set X of objects that
we have defined is X = {0,0,,...,0,}. The global fuzzy variable membership
value corresponding to each object or set of objectsis V = {v(01),v(0y), ..., v(0n),
coy0(05;,05,...),...}, where v(O) is e if no token is available for O,. Following a

certain operations sequence, after the system has been working 1 time unit, 2 time

139

units, and so on, the global fuzzy states will be labeled as Vi, V;, ..., V.. The
support of a fuzzy set A in the universal set X is the crisp set that contains all the
elements of X that have a nonzero membership grade in A, which corresponds to a
set of all existing objects with token values not equal to 0 in the system. An a-cut
of a fuzzy set A is a crisp set A, that contains all the elements of the universal
set X that have a membership grade in A greater than or equal to the specified
value of a, i.e., A, = {z € X|s(z) > a}, where s(z) is used here to represent the
grade of membership. The set of all levels o € [0, 1] that represent distinct a-cuts
of a given fuzzy set A is called a level set of A. Therefore, Ay = {a|s(z) = a for
some r € X}, where A4 denote the level set of fuzzy set A defined on X. Finally,
the scalar cardinality of a fuzzy set A is defined on membership grades of all the
elements of X in A. Thus |A] = ¥ cx s(z). For the set of objects in the systems
considered here, the scalar cardinality is changing throughout the processing because

the number and values of tokens are changing when the task is executed.

6.3.2 Fuzzy Petri net

In [17, 18], we proposed the definition of the generalized fuzzy Petri net which
includes three types of fuzzy variables: local fuzzy variable, fuzzy marking variables,
and global fuzzy variables. Local fuzzy variables are uised to model the uncertainty
of the local variables(‘internal state’) of objects; fuzzy marking variables are used to
indicate the uncertainty that events have occurred; and global fuzzy variables are
used to represent the characteristic variables of the global task. In this chdpter,
since we discuss the task sequencing of operations sequences, only global fuzzy
variables are used to model the degrees of completion for different global subtasks.
Therefore, the following presentation of the definition of the fuzzy Petri net only
includes global fuzzy variables. The task sequencing problem is solved by imposing

numerical constraints incorporated in the token values in the places. Similarly, the

oo N mIE B sl e i L 1 L[N | I i1 u Wil

B

I

my ¢
bl

£

LR
|

‘(' I D

11

e !

140

fuzzy transition functions defined in the net also operate on the values carried by

. tokens.

Definition 6.1 A fuzzy Petri net(FPN) with global fuzzy variables is defined as an

8-tuple:
FPN=(P, T, Q:, I, o, B, m¢, uy),
where
1) P ={p, p2, ..., pn} is a finite set of places, n > 0.
2)T = {t, t2, ..., tm} is a finite set of transitions, m > 0. PNT = 0.

3) Q:={q, g2, ---, q} is a finite set of state tokens, | > 0.

)1, ={1,,1,,...,1,} is aset of internal state variables which are associated
with corresponding objects or places. This mapping can be described as P — I,.
Global fuzzy variables are modified by changing internal state variables when the
net is executed.

5) a C {P x T} is the input function, a set of directed arcs from places to
transitions. We call each p; where (p;,%;) € a as an input place of ¢;.

6) 3 C {T x P} is the output function, a set of directed arcs from transitions
to places. We call each p; where (¢;,p;) € 8 as an output place of ¢;.

7) my: Q. — {U;(ki,ok,), C} is a mapping from a token to a union of 2-tuples
of k; and the k;th global fuzzy variable, oy,, or, to a constant, C, which indicates no
global fuzzy variable is attached to the token. oy, is 2 membership function in a
universe of discourse. In the following discussion we will often refer to the value of
the global fuzzy variable as the ‘token value’.

8) us: T — {f1,fay.-., fm} is an association function, a mapping from tran-
sitions to corresponding reasoning functions. A reasoning function f; maps a set of

tokens in input places to another set of tokens in output places.

In this chapter, global fuzzy state S;, which was defined in Section 5.3, is used

to model a system state. o(p;) is written as o*.

141

In the following discussion, each token, or group of tokens, will map to a
value, [0,1], of each fuzzy membership function with which it is associated. In
this sense, the universe of discourse of the fuzzy set includes the prior and current
system states(markings and internal states). The reasoning functions associated
with the transitions, update the fuzzy membership values as the net executes. For
the example of peg-cylinder assembly(Figure 6.1), we define key variables associated
with cutting, lubricating, and inserting of the peg. A simplified view of the resulting
fuzzy membership function is shown schematically in Figure 6.4. The horizontal axes
show the partial internal states represented by cutting and lubrication, while the
vertical axis indicates the degree of membership in the fuzzy set task completion.
Clearly the task is not ready for completion without both cutting and lubrication,
and cutting to a specific diameter should precede lubrication. Figure 6.4 shows
these conceptual relations, while, in practice, these mappings are carried out by the
reasoning functions attached to the FPN transitions.

A transition in a fuzzy Petri net may be enabled when the token values of
its input places satisfy some specified fuzzy reasoning rule. For example, one such
reasoning rule for assembly requires the token values of all objects to be assembled
have values not less than a value 4, and therefore be members of a designated level
set. If a transition is chosen to fire, all tokens in the input places are removed and
fuzzy tokens are added to its output places, which may contain values different from
the input values. The values of new tokens will depend on the fuzzy reasoning rule
of the transition.

For the three types of transitions, assembly, disassembly, and IST operations
described in Section 6.2, we can define the following fuzzy transition rules. Initially,
we assume ohly one soft component exists in the system. Therefore, we may use
only o; to represent {;(ki, 0%,), as indicated in the FPN definition, and C' = 1. The

case of multiple soft components will be discussed in a later section. Each fuzzy

Bl

L ([l

I

i
i 1

j
i

{

[

I we
ik il

142

Internal State Variable '"CUT’

Figure 6.4: Conceptual diagram of the fuzzy membership function for the global
fuzzy variable ‘task completion’ in the peg-cylinder assembly task. The horizontal
axes are internal state variables for ‘cutting’ and ‘lubrication’, and are not a com-
plete state description. In practice, this membership function is executed using a
transition reasoning function. ‘

143

(a) Before t, is fired. (b) Aftcrr t is fired.

Figure 6.5: Fuzzy Petri net representation for assembly transition.

transition/reasoning function is defined by an integer, which is called a weighting
factor, WF. In practice, the weighting factors and the thresholds are adjusted
to define appropriate level sets for the transitions sequences. WF is defined as
T — {1,2,3,...}, a mapping from transitions to integer values.

Assembly operation: O;,, Oy, ..., Oi, = Oj. The fuzzy Petri net correspond-

ing to the assembly operation is shown in Figure 6.5.
if min(c™,0%,...,0™) >0, then ¢’ = min(o™,0%,...,0') x WF;. (6.4)

Disassembly operation: O; — Oj,, Oj,, ..., Oj. The fuzzy Petri net corre-

sponding to the disassembly operation is shown in Figure 6.6.

if o' >0, then 0’ = o x WF; x soft(0;,) + 1 — soft(0;,), (6.5)

where

1 if O;, is a soft object,
soft(0;,) = 1<d<l
0 otherwise,

IST operation: O, — O,. The fuzzy Petri net corresponding to the IST

operation is shown in Figure 6.7.

if a? > 0, then 09 = o? x WF;. (6.6)

b

[
TR TR

[l L DN |

Wil

gl

Qe

f1mo

7]

|F'|‘ "
|
b i 4 1

|

ST

I
|

I
l

144

(a) Before t is fired. () After t is fired.

Figure 6.6: Fuzzy Petri net representation for disassembly transition.

) o, o, WE, o,
O O
tk pq pP tk pq
(a) Before t_ is fired. () After t, is fired.

Figure 6.7: Fuzzy Petri net representation for IST transition.

145

6.4 An Algorithm for Assigning Global Fuzzy Variables

In this section, we propose an algorithm which maps an ordinary Petri net to
a fuzzy Petri net based on the assumption that a single soft component exists in the
system, and the precedence of key transitions which modify internal states of the

objects which include this component are known a priori.

6.4.1 Prime Number Marking Algorithm

The prime number marking algorithm is based on the fundamental theorem of
arithmetic. This algorithm assigns weighting factors to all transitions in the ordi-
nary Petri net and initial token values to all corresponding places. The fuzzy Petri
net generated using this algorithm assigns prime numbers to transitions, and these
may be mapped onto the token values for degrees of completion of the task. We
call the token values generated by this algorithm prime token values. All feasible
and complete sequences which contain all key ope;ations to change the properties
of the soft objects will be found in the fuzzy Petri net. These sequences are also

guaranteed to have correct precedence relationships among operations.

Prime Number Marking Algorithm
Input: an ordinary Petri net mapped from an AND/OR net, the prime number
table, soft component €, the number of steps for changing properties of ¢ , 8.

QOutput: a fuzzy Petri net.

step 1: Initialization. For all transitions ti(1 < i < m), the weighting factor of ¢,

WF;,=1.
step 2: Pick the first s prime numbers Py, P, ..., P, in the prime number table.

step 9: For all IST transitions, pick those transitions which change the properties of

C, and order them according to the required sequence of operations. Suppose

[} | ’
h | EE. {

Evmw v
T

w L]
|
L,

i (]

0

146

these transitions are i, t,, ..., t4,.

step 4: Set WF,, = P,WF,, =Py, ..., WF, =P, ..., WF, = P,.

step 5: Map the initial marking from the original Petri net. For each place p;,
1 € j < n, set the corresponding token g; to the same value as in the ordinary
Petri net. If place p; corresponds to an object which represents or contains C,

select a positive integer T', such that

0.1< 10T xWF, x WF,, x...x WF,, <1.0. (6.7)

step 6: Change the value of ¢/ to 1077

Proposition 6.1 After the original Petri net is mapped to the fuzzy Petri net, the
initial global state for the fuzzy Petri net contains the token values 0 or 1, and the
prime token value for the soft object is 10~7. The final global state for the fuzzy
Petri net contains the token values of 0 or 1, and the prime token value for the soft

object is 1077 x P, x P, x ... x P,.

6.4.2 Interpretation of Prime Token Values

We assumed initially that only one soft component existed and described
a global fuzzy values assignment algorithm based on prime number sequences of
weighting factors. This assignment guarantees the generation of feasible, complete,
and correctly ordered sequences, and defines a method to describe the degrees of
completion for soft objects. To understand and interpret the prime token values,
we convert them to fuzzy values uniformly distributed between 0 and 1 so that the
resulting token value of the soft object in the final global state is 1.

The possible prime token values for the soft objects are:

IO—T,].O—Txpl,].O-TXPI XP2,.--,10—TXP1 XP2 X...XP,,

147

where T satisfies (6.7). In order to map them to the discrete points on a uniformly-
distributed unit range [0, 1], we use z4, zi, Z2, ..., T, to represent these possible
token values, and we use a function f(z;) to represent the resulting fuzzy values.

Therefore, f(z¢) =0, and

f(z:) =f(z;_1)+-i;, i=12,....s

All feasible fuzzy values here can be considered as the proportions that the first ¢
key transitions contribute compared to all s transitions. An interpretation sequence
can be generated as follows: O(not yet processed), 1(the first key transition has been
fired and others have not yet been fired), 2(the first two key transitions have been
fired and others have not yet been fired), ..., *3*(the first s — 1 key transitions
have been fired and the last one has not yet been fired), 1(all key transitions have
been sequentially fired). With these s + 1 points in a two-dimensional coordinate
frame, we can obtain an equation for a curve which passes through these points.
We use Lagrange’s Interpolation Formula[91] to derive the formula for this equa-
tion. Lagrange’s Formula is used because ;41 — z; is not a constant. Lagrange’s

Interpolation Formula is:

(z—z1)(z—22)(z2—23)...(z — zp) v+ (z—zo)(z —z2)(z —za)...(z — zn)
(z1 — zo)(z1 — 22)(z1 — 23) .. . (21 — Zn)

f(z) =

~ (20— z1)(z0 — z2)(z0 ~ Z3) . . .(T0 — Zn)
(z—zo)(z-z1)(z—22)...(T — Tn-1) . (6.8)

(zn — zo)(zn — z1)(Zn — 22) .. (T — Zn-1) "

where (zo,%0), (z1,%1), (Z2,¥2), -+ (Zn,Yn) are points already known. For our

assumption, the interpolation points are: (10-7,0), (10-TP, 1), (10-TP P, 2),

(100TP PPy, 3), ..., 10°TAP,... P, 1). For the fuzzy Petri net representation,

this yields:

T

Hz) = 1 (z-10"T)z-10"TP P)(c - 10~TP A Ps)...(z - 10"TP, ... P,)
= 3 (10-TP; = 10-T)(10-TP, — 10-TP, P,)(10~-TP, = 10~-TP P, P;)...(10-TP, —10=TP, ... P,)
+2 (z-10"T)z-10"TP)(z-10"TPP,Ps)...(z - 10~TP,...P,)
s(10-TP P, - 10~-T)(10-TP, P, - 10~-TP)(10~-TP P, - 10-TP P, P;)...(10-TP, P, - 10-TP, ... P,})
+...
(z-10"T)z-10"TR)...(z-10"TP,...P,) (6.9)

1 .
+ (10-TP,...P, -10-T)(10-TP, ... P, = 10-TP,)...(10-TP, ... P, = 10-TP, ... P,_;)

I
i

i

|

W Ei WD i W

I co e

Gl

148

Notice that in the above equation, the first point (10~T,0) vanishes. We

suppose £ = 10-T x z/, then 2’ = 107 x z. Therefore, (6.9) is simplified as

f(z)_l (1"_1)(1""P1P2)($’—P1P2P3).,_(x'—P1P2,_.P’)
- S(Pl_l)(Pl—P1P2)(P1—P1P2P3)...(P1—P1P2..'.P,)

L2 (z' = 1)(z' = P)(z' = PP,P3)...(z' = P,P;...P,)

S(P1P2—1)(P1P2—P1)(P1P2"'P1P2P3)...(P1P2"P1P2...P_,)
(' =1)(z'"-P)...(c' = PP,... Py_y)

P.. P,-L)(P...P,-P)...(B..P,—P...Py)

When we map the prime token values to fuzzy values for each object in the

+.o..+ (6.10)

representation, we also change the weighting factors of all transitions in the fuzzy
Petri net so that the sequence of fuzzy values can be obtained using the same fuzzy
reasoning rules. Suppose there are s key transitions in the system and the initial
prime token value for the soft object is 10~7. The updated weighting factors for all
key transitions are: 107 x 1,2, 3,4, .. 221 B The weighting factors for other
transitions and the initial global fuzzy state are left as the same.

In the example of the peg-cylinder assembly s'ystem in Section 6.3, the param-
eters are: s =2, P, =2, P, =3,and T = 1. In this case, (6.10) becomes

(' =1)(z'=6) 2(z'-1)(z'-2) _ 3 13

1 , ,
f@)=5G"7e% T3 6-D6-2 ~° ~ D= + 3)

Therefore,

when z = 0.1, z’ = 0.1 x 10! = 1, f(z) =0,

when z =02,z =02 x 10! =2, f(z) =1 x (- + 32) = 0.5,
when z = 0.6, z' = 0.6 x 10' = 6, f(z) =5 x (-3 + 33) = 1.0.

Using the prime number marking algorithm, the ordinary Petri net shown
in Figure 6.3 can be mapped into a fuzzy Petri net as shown in Figure 6.8. The
initial global fuzzy state is shown in this net. The soft objects in this example are
P, RP, RPM, RPL, RPC, PC. The key transitions are t; and t3. Therefore,
WFs =P, =2and WFy = P, = 3. Because 107! x WF; x WF; = 0.6 satisfies

149

6.7), o? of the initial global state is thus 0.1. The token value for place PC in the
g .

final global state is 0.6.

6.4.3 Feasible Sequences in the Fuzzy Petri Net

The following theorem provides a method to use the feasible global fuzzy
states obtained during the generation of the fuzzy Petri net, to search for feasible,

complete, and correctly ordered sequences efficiently.

Theorem 6.1 The Fundamental Theorem of Arithmetic
If p; and g¢; are positive primes, and if
— - i A B,
a= sz - H q])
=1 =1
where

l<p<p2<...<pnoy1 < Pu,

and

1< <@<... < qm-1 < qm,

then n = m, p; = ¢; and a; = f;, every positive integer has a composition into

positive prime factors, which is unique apart from the order of the factors.

Proof. See [94, p. 263].

Theorem 6.2 Using the prime number marking algorithm, all sequences generated
from the fuzzy Petri net of which each transition can only be fired at most once, are
feasible, complete, and hold correct precedence relationships among key transitions,
if and only if the places corresponding to soft objects can only hold the following
order of token values: 10-7,10-Tx P, 10"t x P, x P, ..., 100T x PLx P, x... X P,,

where P, P,,..., P, are the first s primes.

Proof. The values of all weighting factors WFy, WF,, ..., WF, are 1, P, P,

...y Py, 1 <5 < m. If the sequences are feasible, all feasible token values are 1077,

0 Wi | Wi =u] K| {

i W w &

c.mu m.‘
b i

T
L ukd,

¥

adulal
Al L L)

(I

T

ol

"

PC
7
P 7,

S B

RPC
,
t16
i Tl U2 1]
|

Figure 6.8: The fuzzy Petri net mapped from the previous ordinary Petri net.

151

10T x P, 10T x P, ..., 10T x P, 10T xPix P,y .., 100T x Py x...x P, ie.,
C3+C}+C3+...4C: =2° possible token values. If the sequences also hold correct
precedence relationships on key transitions, then the weighting factor of the first key
transition that the developing sequences meet should be WF;. All possible token
values are now reduced to 10~7T, 10~T x P, 10~7 x P, x © where © is a product of at
most s — 1 elements which do not contain P,. Therefore, if the developing sequences
meet the second weighting factor which is not equal to 1, all possible £oken values
are now reduced to 10=7,10"T x P, 1077 x P, x P;, 107 x P, x P, x ©', where &’
is a product of at most s — 2 elements which do not contain P, and P;. Continuing
this procedure, all possible token values that the developing sequences will meet are:
10°7,10°T x P,, 10T x P x Py, ..., 1077 x Py x Py x ... x Py, i.e,s+1 possible
states. If the sequences are also complete, the sequence should follow all possible s
weighting factors which are not equal to 1. Therefore, the sequences will meet all
possible token values. The necessary part of the theorem is thus proved.

Suppose the soft objects hold the following sequence of token values: 10~7,10-7
xP, 100T x Py x Py, ..., 1077 x P, x P, x...x P,. Notice that at this time, we are
given all results of products. Using Theorem 6.1, we will get unique compositions
into positive prime factors and 10-7T, and then order the prime factors inside the
form of products. A unique ordered sequence for each token value will be obtained.
The first value corresponds to firing any number of transitions(with no duplication)
which do not contain a weighting factor not equal to 1. The second value shows that
besides firing any number of transitions which do not contain a weighting factor of
a key transition, ¢,, is also fired, and then any number of transitions of a weighting
factor equal to 1 can be fired. We continue this enumeration and find all values
in the above sequence are feasible. The order of the transitions in the sequence
obviously holds the correct precedence relationships, i.e., we should fire ¢,, first, and

then fire ¢,,, and so on, and at last fire ¢,,. Moreover, the sequences contain all

L

" ho !
i & wWI = & i | 1

LI

€ 0 W

g

]
i i ke

bl

I

T

ﬂ\l ‘\
il |1

(R

i

C

it

m
1

b 152

possible copies of key transitions and are therefore complete.
Q.E.D. O

The corollaries listed below directly follow from Theorem 6.2.

Corollary 6.1 For a fuzzy Petri net marked using the prime number marking algo-

rithm, m(Q,) = {1, 1077,10"Tx P, 10°Tx P, x P, ..., 10T x Px Py x...x P,}.

Corollary 6.2 The search in the fuzzy Petri net is halted at a token value o' ¢
m(Q:), but will not exclude any feasible, complete sequence which has correct

precedence relationships among operations.

Corollary 6.2 is used to search all possible correct sequences which satisfy the
three properties from the fuzzy Petri net off-line. When a set of enabled transitions
are found for the development of partial sequences, those transitions which lead to

undesirable token values in the corresponding output- places are discarded.

6.4.4 Multiple Assigned Key Transition Sequences

In the previous sections, it was assumed that the order of the key transitions
is assigned in advance and only one order is feasible. However, in practice, it may
often occur that more than one partial ordering of key transitions are possible. For
example, suppose t, and ¢, are key transitions, both sequences ...t,...¢ ... and

..%...t,... may be feasible. The plan representation should include feasible and
complete sequences which satisfy either ordering of key transitions.

The problem of multiple partial orderings may be solved in a straightforward
manner by enumerating all possible orderings of process steps and constructing the
union of the plans from each set.

In general, if we have k feasible assigned key transition sequences, 53, S, ..., Sk.
For each S;, we use the planning strategy described above and obtain all feasible,
complete, and correctly ordered sequences represented as {plan(S;)} which is a set of

sequences. Then the final complete sequence set can be obtained as U, {plan(S;)}.

153

6.5 Fuzzy Representation for Multiple Soft Components

Often several soft components may be present in a complex system. For ex-
ample, more than one type of part might need to be processed in a given system,
and then be assembled. The properties for all these soft components may change.
In this case, a more general marking and sequencing algorithm is required to permit
correct reasoning when multiple soft components take part in a transition. This
section describes an algorithm which provides a consistent strategy and reduces to

the previous reasoning mechanism when a single soft component is present.

6.5.1 Fuzzy Reasoning for Multiple Soft Components

»

We assume we have r soft components labeled as Ci,Ca, ..., C,, respectively.

For any soft object O:

1 if O is the j type soft object,)
soft;(0) = 1<5<r.
0 otherwise, .

An assembly or subassembly may contain both éj and other soft components:

1 if O is the t-j-.. .-k type soft object, o
softi;. x(0) = 1<4,5,...,k<r.
0 otherwise,

The i-j-.. .-k type soft object is defined as an assembly or subassembly containing
all the soft components labeled as ¢, C’; ..., and C, and no other soft components.

Based on these definitions, a strategy which uses a prime number sequence
to represent key transitions with multiple soft components was presented in [12].
In that approach, Py, Pry1, Par41, --. Plsy-1)r41 Was used to represent the Ist
subsequence of prime numbers for marking the key transitions corresponding to
the 1st soft component. Pj, Pry2, Pir42s -y Plsy-1)r+2 Was used to represent the
2nd subsequence of prime numbers marking those corresponding to the 2nd soft

component. Continuing this procedure, P,, Pz, P, ..., Pls,—1)r4r(=s.r) Was used

ali

WE]

!
']

| wir W Y il

[

154

to represent the rth subsequence of prime numbers for the rth soft component. In
this chapter, we will use a related, but simpler, approach which assigns the same
sequence of prime numbers for the key transitions corresponding to different kinds
of labeled, or ‘colored’, soft components. We can generalize the representations in
(6.4), (6.5) and (6.6) to obtain the corresponding fuzzy reasoning rules for output
places for three types of transitions, as follows: ‘

Assembly operation: O;,,0;,,...,0;, — O;. The objects O,—l yOigy -+, 0i,, 05
may contain more than one soft component. Therefore, the representation for those
kinds of soft objects should be distinguished from other objects and at any given
time, we should be able to reason about the characteristics of these objects. Before
we give the function for the assembly operation, we first give the definition of min

and trs for each object. We also assume ¢, will function on the jth soft component.
if soft;(0i,) =1, then min(0;,) = 0; and trs(0;,) = (j,0; x WF,),

if softi; x(0:,) =1, then min(0;,) = min(0,0;,...,0%) and
trs(0:,) = (i,0:) JGr o5 x WE) ...k, %),
otherwise, min(0;,) = 1 and trs(0;,) = 0,
1<s<u.

The generalization of formula (6.4) is:
if min(min(0;,),min(0,,),...,min(0;,)) > 0, then

o’ = soft(0;) x O trs(0;,) + 1 — soft(0;),

s=1

where

soft(0;) =Y soft;(0;) + Esoft,-k(Oj) +...+ Y softiz.(0;). (6.11)
i ik

12...r

Disassembly operation: O; = Oj,, Oj,, ..., Oj,. The generalization of formula

(6.5) is:
if min(0;) > 8, then o® = s0ft(0,) x trs(0,) + 1 — soft(0.),
hn<s<a (6.12)

IST operation: O, — O,.

if min(0,) > 8, then 0% = s0ft(0q) x trs(Og) + 1 — s0f1(0,). (6.13)

6.5.2 Generalized Prime Number Marking Algorithm

For a system with more than one soft component, we should know the status
of the current objects at each step of the process, i.e., which soft components the
objects contain, and the degree of completion for this soft object as well as every soft
component it contains. For the sake of simplicity, we assume all soft components in
the system are independent of each other, i.e., there are no relations between the
orders of key transitions for any two soft components. Moreover, we still want to
guarantee the precedence relationships émong operations for each soft component,
so that the combinations of several soft components will still hold this property.

The prime number marking algorithm is generalized as follows:

Generalized Prime Number Marking Algorithm

Input: the ordinary Petri net mapped from an AND/OR net, the prime number
table, soft components Gy, Ca, ..., C,, the numbers of steps for changing properties
for each soft compbner;t Sl, Sg, ceny Sh 7

Qutput: a fuzzy Petri net.

step I: Initialization. For all transitions £;(1 <Jj < m), the weighting factor of ¢;,

WF; = L

| i | | |

Wi W Wa. Wi Eew Wi Wil Wi mm w \I

[nnwm vy
I b |

lw vl
TR

o
.

lu’uv N I Y|
e ol

vl

I

o

I v

156

step 2: For all IST transitions, pick those transitions which make the changes
of properties for C;, 1 < i < r, and order them according to the required

sequence of changes. Suppose these transitions are #, t5, ..., t&.
step 3: For1<i<r,set WF} =P, WFi=Ph,, ..., WF! = Ps,.

step 4: Map the initial marking from the original Petri net. For each place p;,
1 £ j < n, set the corresponding token value o° to have the same token value

as in the ordinary Petri net.
step 5: Foreach C;, 1 < i <r, select a positive integer T;, such that

0.1 <107 x WF} x WFj x ... x WFi < 1.0. (6.14)

step 6: Mark o7 the value of (,10~T), if O; contains only C;; Mark o7 the value of
(41,1071) U(42, 10" T2) U. . . (34, 10-Tw), if O; contains soft components C",-l,

-~

C,‘,,..., C',-“,ISuSr.

An example of this case is obtained by adding to Figure 6.1 a visual sensor
mounted near the gripper of the robot arm. Before the peg is inserted into the
hollow cylinder, the robot should move near the cylinder to sense the exact insertion
position. The sensing operation refines the internal state(size and position) of the
cylinder, and for this example the cylinder C becomes a soft object. This sensing
operation can be done anytime the robot is not holding anything. We model the
combination of the two interacting components R and C as a subassembly marked
RC. The sensing process is represented as SEN. The corresponding updated
AND/OR net and the ordinary Petri net is shown in Figure 6.9 and Figure 6.10,
respectively.

For this example, the resulting updated fuzzy Petri net is shown in Figure
6.11. There are two soft components, peg P and hollow cylinder C in the system.

The parameters are r = 2, S; = 2 and S, = 1. t5 and tg are key transitions for P

157

LUB CuT

Figure 6.9: The updated AND/OR net.

and t,7 is the key transition for C. Therefore, WFs = P, = 2, WFy =P, =3, and
WFy; = P, = 2. Because 10~! x WF; x WF; = 0.6 and 10-! x WFy; = 0.2 satisfy
(6.14), 0 = (1,0.1) and ¢® = (2,0.1). The token value for place PC' in the final

marking is (1,0.6) U(2,0.2).

6.5.3 Interpretation of Fuzzy Values for Multiple Soft Components

‘We may interpret the case of multiple soft components in analogy to ‘colored’

Petri net models[54]. In this context, we say different soft components have different
colors. A soft object may contain different kinds of soft components, and we call this
object a composite object. However, we assume that the colors of soft components
in one object will not be mixed up, i.e., the colors are independent. Knowing the
number of soft components in the system as well as the sequence of key operations for
each soft component, we can map the the weighting factors of these key transitions
sequences of prime numbers depending on the color of the soft object. Therefore,

at any given time, we can get a unique decomposition of primes corresponding to

M 1] ni W mi m W | JTH— -] wn Wi W N

"o
|

| B

1
i

1‘“”
ilu [

O I | 1l

158

Figure 6.10: The updated ordinary Petri net. The names of soft objects are followed
by a symbol: “x”.

159

o

Figure 6.11: The fuzzy Petri net mapped from the updated ordinary Petri net.

Wiy W o m mne K

Wil |

[(N NI

I

Wi Wi OEE K

Ll] (VS

)i
i

160

one soft component such that a correct precedence relationship can be verified to
be followed.

As in the case of a single soft component, we can map the prime token values to
fuzzy values uniformly distributed in [0, 1] for each different color of the object. For
a soft object which contains more than one soft component, the degree of completion
of this soft object can be understood by looking at the degrees of completion of the
soft components independently. For the object PC shown in Figure 6.11, if the
cutting job has been done on P, and neither sensing on C nor lubricating on P
starts, the interpreted fuzzy value of P is 0.5 and the value of C is 0, as discussed in
the last section. After we finish sensing on C and lubricating P still doesn’t start,
the value of P is 0.5 and the value of C is 1. After all jobs are finished on soft
components P and C, the value of P and C are both 1.

Because the prime number representation and the marking for different colors
keep token values of soft components inside a soft object independent, it is conve-
nient to reason about the degree of completion for any soft component in an object.
If we map the prime token values for multiple soft component case to fuzzy val-
ues, we are also able to obtain straightforward modification for weighting factors
of transiti-ons to keep fuzzy reasoning strategy valid for reasoning fuzzy values, as
indicated in the last section. This is a principal advantage to using prime number

marking for the multiple soft component case.

6.6 Simulation Results and Conclusions

For the example shown in Figures 6.1, 6.2 and 6.3, using the ordinary Petri net
directly mapped from the original AND/OR net, we obtain 13 feasible sequences to
accomplish the cylinder assembly task. However, when we search the fuzzy Petri
net mapped from this ordinary Petri net(see Figure 6.8), we obtain only one se-

quence which is feasible, complete and maintains correct precedence relationships

161

for operations, i.e., t1 t3 t5 t6 t4 t8 t9 t10 t7 t12 t13.

For the example with added sensing shown in Figure 6.9, when we search all

feasible sequences, we get the following 39 sequences:

*** Sequence 1 ***t15 t17 t18 t16 t1 t12 t13

*** Gequence 2 ***t15 t17 t18 t16 t1 t8 t9 t10 t7 t12 t13

*** Gequence 3 ***¢15 t17 t18 t16 t1 t8 t9 t10 t7 t3 t5 t6 t4 t12 t13
*** Cequence 4 ***t15 t17 t18 t16 t1 t8 t9 t10 t7 t3 t4 t12 t13
*** Sequence 5 ***t15 t17 t18 t16 t1 t8 t7 t12 t13

*x% Qequence 6 ***t15 t17 t18 t16 t1 t8 t7 t3 t5 t6 t4 t12 t13
*** Qequence 7 ***t15 t17 t18 t16 t1 t8 t7 t3 t4 t12 t13

#x+ Gequence 8 ***t15 t17 £18 £16 t1 t3 t5 t6 t4 t12 13

*** Sequence 9 ***t15 t17 t18 t16 t1 t3 t5 t6 t4 t8 t9 t10 t7 t12 t13
*** Sequence 10 ***t15 t17 t18 t16 t1 t3 t5 t6 t4 t8 t7 t12 t13
*** Sequence 11 ***t15 t17 t18 t16 t1 t3 t4 t12 t13

+** Sequence 12 ***t15 t17 t18 t16 t1 t3 t4 t8 t9 t10 t7 t12 t13
*** Sequence 13 ***t15 t17 t18 t16 t1 t3 t4 t8 t7 t12 t13

*** Sequence 14 ***t15 t16 t1 t12 t13

*** Sequence 15 ***t15 t16 t1 t8 t9 t10 t7 t12 t13

*** Sequence 16 ***t15 t16 t1 t8 t9 t10 t7 t3 t5 t6 t4 t12 t13
_*** Cequence 17 ***t15 t16 t1 t8 t9 t10 t7 t3 t4 t12 t13

x Sequence 18 *t15 t16 t1 t8 t7 t12 t13

*** Sequence 19 ***t15 t16 t1 t8 t7 t3 t5 t6 t4 t12 ¢13

*** Sequence 20 ***t15 t16 t1 t8 t7 t3 t4 t12 t13

*** Gequence 21 ***t15 t16 t1 t3 t5 t6 t4 t12 t13

% Sequence 22 ***t15 t16 t1 t3 t5 t6 t4 t8 t9 t10t7 t12 t13
*** Sequence 23 ***t15 t16 t1 t3 t5 t6 t4 t8 t7 t12 t13

*** Sequence 24 ***t15 t16 t1 t3 t4 t12 t13

|

Wi

| [/ 1

L Ll

162

x* Sequence 25 *t15 t16 t1 t3 t4 t8 t9 t10 t7 t12 t13

x Sequence 26 *t15 t16 t1 t3 t4 t8 t7 t12 t13

*** Sequence 27 ***t1 t12 t13

*** Sequence 28 ***t1 t8 t9 t10 t7 t12 t13

*** Sequence 29 ***t1 t8 t9 t10 t7 t3 t5 t6 t4 t12 t13

*** Sequence 30 ***t1 t8 t9 t10 t7 t3 t4 t12 t13

*** Sequence 31 ***t1 t8 t7 t12 t13

*** Sequence 32 ***t1 t8 t7 t3 t5 t6 t4 t12 t13

*** Sequence 33 ***t1 t8 t7 t3 t4 t12 t13

*** Sequence 34 ***t1 t3 t5 t6 t4 t12 t13

*** Sequence 35 ***t1 t3 t5 t6 t4 t8 t9 t10 t7 t12 t13

+* Sequence 36 *t1 t3 t5 t6 t4 t8 t7 t12 t13

*** Sequence 37 ***t1 t3 t4 t12 t13

*** Sequence 38 ***t1 t3 t4 t8 t9 t10 t7 t12 t13

%% Soquence 39 ***t1 t3 t4 t8 t7 t12t13

When we map this updated ordinary Petri net to a fuzzy Petri net(see Figure
6.11) with two soft components, only one sequence is obtained. This is equal to
Sequence 9 in the above sequence set. Therefore, we can conclude that even though
the searching effort for transition sequences as well as the number of sequences
obtained for an ordinary Petri net will increase exponentially relative to the in-
creased number of transitions and places, the number of sequences searched in the
corresponding prime number marked fuzzy Petri net may be strongly restricted by
ordering constraints on the process steps. The fuzzy Petri net thus appears to be an
efficient tool for modeling and representing all feasible, complete process sequences
which maintain the correct precedence relationships.

One of the fuzzy Petri net variable types, the global fuzzy variable, is used

in this research to efficiently search for correct operations sequences from a fuzzy

163

Petri net to reach from an initial state to a final state while satisfying precedence
and completeness constraints. When the planned sequence is developing, the global
values carried by tokens are subject to change. If more than one soft component
is handled, a generalized assignment algorithm can be used so that a colored se-
quence of prime markings will be used for each different soft component. The prime
token values used for searching can also be interpreted as a fuzzy value uniformly
distributed between 0 and 1. When we search the sequences in the fuzzy Petri net,
all sequences which will be incomplete or having incorrect precedence relationships
will be discarded. Computation time and storage is reduced since it is not necessary

to store those incorrect sequences.

mi n |

1

i W] Wil s W m

L I

‘[ml

ail | /I ' Y

i

I

[
&

¥

{

L

{

I

(!

CHAPTER 7
SENSOR-BASED ERROR RECOVERY FOR ROBOTIC TASK

SEQUENCES USING FUZZY PETRI NETS

During the execution of a task based on an off-line planned sequence of operations, a
robot workcell may encounter errors or events which cause the expected sequence to
be unexecutable. This chapter addresses the problem of representing and automati-
cally invoking error recovery sequences in response to sensed errors during execution.
The approach is based on the use of a fuzzy Petri net model in which sensory verifi-
cation operations determine local fuzzy variables associated with the objects in the
net. The outcome of a sensory verification operation may change the local fuzzy
variables and leads to an altered firing sequence and resulting error recovery. The
fuzzy Petri net itself is systematically derived from an AND/OR net model of the
task[10, 11], and carries guaranteed properties of safeness, liveness, and reversibility,
while the fuzzy assignment algorithm for global fuzzy variables{12, 20] guarantees
precedence of subgoal operations. An algorithm is described for adding sensory
verification transitions and associated fuzzy transition rules which implement error
recovery through retry or alternative sequence mechanisms. An executable fuzzy
Petri net could be obtained using a feasible, complete, and correctly ordered se-

quence.

7.1 Introduction

In previous work, we have used AND/OR graphs[47] and nets[10, 11] to repre-
sent geometric relations and operations in robotic assembly workcells and materials
handling systems. Based on the characteristics of components and relations which
may change their properties during the execution of plans, we introduced the con-

cept of a fuzzy Petri net representation and a method of reasoning about correct

164

165

precedence relationships among task subgoals[12, 20]. In the fuzzy Petri net, a
prime number marking algorithm guarantees strong numerical constraints on the
precedence and reduces the set of feasible sequences. Using fuzzy Petri nets, we can
search and obtain all possible sequences which guarantee the properties of feasibil-
ity, completeness, and correct precedence relationships for subgoal operations. The
resultant sequence set from the fuzzy Petri net requires less computer storage and
time to search for good solutions compared with the strategy used in [10, 11]. The
token values for all places in the fuzzy Petri net can be interpreted as fuzzy values
in [0, 1] which represent the degree of completion for each object in the system. The
fuzzy values representing internal state variables which are defined as local fuzzy
variables are used in this chapter to derive a sensor-based verification and reasoning
strategy for exception handling.

Task sequence planning is normally performed off-line using a high-level rep-
resentation of goals and constraints. Task sequences generated based on a system
model and an initial and final state are ezpected ordered operations sequences, i.e.,
with the assumption that no abnormal events will happen. However, at execution
time some unexpected conditions may occur; for example, some components may
be missing, some objects may be put at incorrect positions, or, the orientations of
some components may not be the same as stored in the computer. Therefore, prac-
tical automated manufacturing systems often incorporate an enormous amount of
control code for error handling and recovery[41]. Some approaches to error recovery
for assembly workcells have been reviewed in Section 2.4.

In this chapter, we address the problem of automatically invoking error re-
covery sequences within a set of possible execution sequences described by a fuzzy
Petri net. The fuzzy Petri net incorporates many possible feasible sequences, and
the resultant firing sequence depends on the fuzzy values in the net. A sensory ver-

ification operation is used to observe the system state, and the outcome of sensory

{.

i Wi & 1 [B Ll I 1) (R Iy | bl]

g
N

I

{1

it

nr

DS

i
1

{

]

166

verification may change the local fuzzy variables associated with the objects leading
to an altered firing sequence. If the fuzzy Petri net is correctly designed, this altered
firing sequence will eventually lead to a goal state by correctly executing an error re-
covery procedure. A main goal of this chapter is to introduce a systematic approach

to synthesis of this fuzzy Petri net with sensor verification and error recovery.

7.2 Fuzzy Petri Net Representation of Task Level Operations

The definition for the generalized fuzzy Petri net[12, 14, 17, 18] is shown in
Section 5.2. In this definition, p may be regarded as a fuzzy internal state variable.
In practice, these variables may also be used as conventional internal state variables.

Each place in the FPN represents an object. Therefore, the local fuzzy vari-
ables and fuzzy marking variables are associated with the objects. In the discussions
in this chapter, we only use global fuzzy variables and local fuzzy variables for the
representation of sequence planning and error recovery, respectively. f; has a rule for
reasoning about local fuzzy variables, r,,(t,-)(writteﬁ as i), and a rule for reasoning
about global fuzzy variables, r,(t;)(written as r¥). The fuzzy marking variable is
also useful in error recovery, since it models the uncertain outcomes of operations,
but this will not be discussed in this chapter.

Because there are three different kinds of variables associated with places and
tokens in the FPN, three different system states may be defined([17, 22]. Two of
them, local fuzzy state and global fuzzy state, are used in this chapter and their
definitions were given in Section 5.3. Here, p(p;) is written as p; and o(p;) is wfitten
as 0;. A local fuzzy variable represents the internal state of an object.

In this chapter, the fuzzy Petri net representation is used as follows. Each
place, p;, represents a system geometric substate, or subassembly, and O; corre-
sponds to a node in the AND/OR net. For example, the state “robot holding an

object” might be a place, p;,. Each transition, t,;, represents a state change signified

167

by the transfer of tokens from input place set U;{p:} to output place set U;{p;}.
The operation “robot places the object on the table” might be a transition. a and 3
are the mappings which define feasible transitions among system states for a given
workecell.

Each token in the fuzzy Petri net may take on some fuzzy membership value,
mi(g;) = Us(ki, ox;), or, e, which constitutes a global fuzzy state of the net, S,. In
our definition of the net, the global fuzzy variable constitutes a ‘degree of completion’
of a process. Each transition has a weighting factor W F; which affects the fuzzy
~value of the token when the transition is fired. The changing of local fuzzy variables
follow specific reasoning rules[17, 18]. The rules governing the mapping of fuzzy
values of tokens across transitions will be described in the next section.

In [12], we showed that a set of fuzzy values of tokens and transition weights
could be developed which guarantee that a set of designated operations, called key
transitions, would be executed in a designated precedence order. The prime number
marking algorithm([12, 20] used to synthesize this net imposes numerical constraints
on the fuzzy values of tokens in order to enforce these precedence relations. In this
approach, the key transitions may be viewed as subgoals in the task which yield key
states and have fixed prior order constraints. Enforcing these constraints implicitly
in the net representation leads to efficient search for feasible solutions.

Figure 7.1 shows an example of a robot workcell which is a modified version of
Figure 6.1. In this task, the robot picks up the raw peg, transfers it to the cutting
machine, then to the lubricating machine to process the peg, and finally to the
hollow cylinder to accomplish the assembly. The sensor on the head of the robot
arm is used to identify the precise position of the hole inside the hollow cylinder.

In modeling real processes, we do not need to represent all tokens with fuzzy
~ values, since not all objects unpdergo changes in properties or relations during the

process. For convenience, we will define a class of objects which do undergo these

Qi W mN o .

0

]

| i

!"’]
s

Gl

‘”
e

lm\
i 1

ind

LT

LR
I

L C

L.

2

.
.

,m
o w.

168

Lubricating
Machine

Sensor

Robot

Hollow Cylinder Peg

Cutting
Machine

Figure 7.1: A peg-cylinder assembly system.

169

changes as soft objects:

Definition 7.1 Soft components and soft objects: A soft component is a single part
in a system whose “properties” change during execution of plans. For purposes here,
these are mostly often geometric properties, such as the change in shape of the peg
in example 1.

A soft object may be either a soft component, or an assembly or subassembly which

includes a soft component, or an object with soft relation between parts.

Soft components and objects are characterized by soft parameters, which are
internal state variables such as geometric parameters of shape or relative positions
of parts in an assembly, but may also include mechanical properties such as surface
characteristics. In this chapter, some of these soft parameters will be modeled by
local fuzzy variables.

In example 1, one soft parameter of the peg is the diameter, which is changed
by the cutting operation, and the second is surface lubrication state which is changed
by the lubrication operation. A soft parameter of the object RPC is the geometric
relation of the peg axis to the cylinder axis which will determine whether insertion is
feasible. In Section 7.4, the sensory verification operation will be used to observe the
current values of soft parameters during execution, map them to fuzzy membership
functions, and control the resulting flow of the sequence using fuzzy reasoning at
the transitions.

The correspondihg fuzzy Petri net for the peg-cylinder assembly example is il-
lustrated in Figure 6.11. The weighting factors assigned to transitions, and the initial
global fuzzy state are shown. The fuzzy firing rules for token values are described in
Section 7.3. The threshold 8 is 0.05. All feasible objects in the system are mapped to
places in the net: p;:R(robot), p2:P(peg), ps:M(cutting machine), ps:L(lubricating
machine), ps:C(hollow cylinder), ps:RP(robot grasping peg), p10:RPM(robot trans-
ferring peg to cutting machine), p12:CUT(cutting job), pe:RPL(robot transferring

ki

1} i N Rl g N

i

I

K

il

I

L [0

LLELE

r

il

!

mi

li

1

{

CIiiL

170

peg to lubricating machine), p1;:LUB(lubricating job), p13:RC(robot grasping hollow
cylinder), p14:SEN(sensing job), ps:RPC(robot inserting peg into hollow cylinder)
and p7:PC(peg and cylinder assembly). The global fuzzy state of this fuzzy Petri
net is constructed based on a required precedence of subgoal operations: cutting(ts)
precedes lubrication(tg) precedes insertion(t;2), and position sensing(t,7) precedes
insertion(t;2). ts, tg and t,7 are key transitions in the system, and are defined o
priori. Based on the prime number marking algorithm[12, 20], the mapping from
transitions to integer values is WFyz = 2, WF; = 2, and WFs = 3, and all other
weighting factors are equal to 1. From the same algorithm, the initial global fuzzy
state of (py, p2, ..., p1a)7 is found to be (1.0,(1,0.1),(2,0.1),1.0,1.0,¢,¢,¢,¢,¢,
e,e,e,e)T. We have shown in [12] that only one shortest sequence, which is fea-
sible, complete, and maintains correct precedence relationships, is obtained, i.e.,
tistirtististitatstetatstotiotriiatia. To find this sequence, we have assumed that each
transition can be fired at most once. In this sequence, the robot goes to the hollow
cylinder to sense the position of the hole before it carries the peg for machining.
For the purposes of planning this sequence, the sensing operation is assumed
to be deterministic and always successful. In Section 7.4, we introduce a nonde-
terministic fuzzy Petri net in which the outcome of the sensory measurement may

affect the sequence at execution time.

7.3 Fuzzy Transition Rules: Global Fuzzy Variables

During the execution of a task sequence, the system reasons about fuzzy values
of tokens and the local fuzzy variables of the objects after a transition a fired. In
this section, we assume the local fuzzy variables are not affected by transitions, and
focus on transition reasoning rules affecting global variables. In the next section, we
will discuss the role of local fuzzy variables in transition reasoning rules. A set of

fuzzy transition rules for global fuzzy variables in the case of one soft component is

171

(a) Before t, is fired. (b) After t_ is fired.

Figure 7.2: Fuzzy Petri net representation for assembly operation. The local fuzzy
variables for O;,, O;,, and O; are p;,, pi,, and pj, respectively. The values of tokens
in the places of O;, and O;, are ¢* and ¢* in (a) and that in the place of O; is o’
in (b), respectively. The weighting factor of tx is W Fj.
given as below. If a system contains more than one soft component, a generalized
version of fuzzy transition rules can be used{12, 20]. The symbol 4§ in the following
discussion refers to the threshold of reasoning rules.

Assembly operation: O;,, O, ..., O;, — O;. The fuzzy Petri net corre-

sponding to the assembly operation with two input places is shown in Figure 7.2,

and obeys the following fuzzy transition rule:
if min(a"‘,ai’,...,a“‘) >0, then o’ = min(a“,a",...,a“) x WE. (7.1)

Since W F, > 1, this rule assigns the same or incréased completion value to
the output token as that held by the minimum input token.

Disassembly operation: O; — 0j,, Oy, ..., O;. The fuzzy Petri net
corresponding to the disassembly operation with two output places is shown in

Figure 7.3, and obeys the following fuzzy transition rule:

if ' >0, then 0% = o' x WF x soft(0;,) + 1 — soft(0;,), (7.2)

v w mil m Ll i | i w |

1

e

g

Lo
THFTEEN

IR

(a) Before ty is fired. (b) After t, is fired.

Figure 7.3: Fuzzy Petri net representation for disassembly operation. The local
fuzzy variables for O;, O;,, and O;, are p;, pj,, and pj,, respectively. The values of
tokens in the places of O;, and Oj, are o' and o7 in (b) and that in the place of
O; is o' in (a), respectively. The weighting factor of t; is W Fy.

0 o “ﬁ:k Oq 0p WFk Oq
O——0O O—F—®
;; ty

(a) Before ty is fired. - (b) After t, is fired.

Figure 7.4: Fuzzy Petri net representation for IST operation. The local fuzzy
variables for O, and O, are p, and p,, respectively. The values of tokens in the
places of O, and O, are ¢? and ¢? in (a) and (b), respectively. The weighting factor
of ty is WF;.

where

1 if Oj, is a soft object,
soft(0j,) = 1<d< i

0 otherwise,

Since W F}, > 1, this rule assigns the same or increased completion token value
to each soft object and leaves other objects at 1.

Internal State Transition(IST) operation: O, — O,. The fuzzy Petri net
corresponding to the IST operation is shown in Figure 7.4, and obeys the following

fuzzy transition rule:

if o? > 8, then 07 = o x WF,. (7.3)

173

Since uj, > 1, this rule assigns the same or increased completion value to the

output token.

7.4 Execution of Plans on the Fuzzy Petri Net

During the real-time execution of a selected sequence which is feasible, com-
plete, and maintains correct precedence relationships for key transitions, some of
these key transi@ions may not cause the expected results. This uncertainty in local
parameters can be represented by local fuzzy variables ;associated with objects. For
example, we assume the input place of a key transition ¢;, namely p;, contains a
token with fuzzy value o7 before ¢, is fired. The weighting factor fbr t;is WF;. As
mentioned in the preﬁéus discussié)hs, the prime token value in Vtheroutput place
p; is ol = o/ x WF;, assuming p(p;) is fixed. In the real-time execution of the
planned sequence, it may happen that p(p;:) is changed because erTors may occur
during the execution of ¢;, while the global token value of o’ does show that ¢; has
been successfully executed. '

To guarantee a correct fuzzy token moving in the Petri net, we introduce a
sensor which verifies the states for soft objects, especially after key transitions aré
fired in the system. In order to incorporate such sensor-based selection of operations,
we need to define fuzzy rules governing an additional type of Petri net module cor-
responding to mutually ezclusive operations for the execution of plans on-line. This
module reasons about the local fuzzy variables based on the input local variables.
Therefore, during the execution of a task sequence, the selection of enabled tran-
sitions not only depends on token values(global fuzzy variables), but also on local
fuzzy variables. In a fuzzy Petri net model used for planning, the alternative choice
of mutually exclusive operations is resolved by the off-line search for an expected
plan. However, real-time execution of the net requires local resolution of this choice

and will depend on the current local variables which occur. The fuzzy transition

gl

)

g0 W mm Wik WmED o IR MEL O EID w00 MR

RiEl

Il

@ L

mi

L [

[

[! ok
[ET TN

pry
-

I

Lo

Il

i uw
.M\Nm i

174

(a) Before t, is fired. (b) After t"z is fired.
1

Figure 7.5: Fuzzy Petri net representation for ME transitions. In (a), The global
fuzzy variables and local fuzzy variables of O, are 0. and p.. In (b), the global fuzzy
variable of Oy, is o,,. The weighting factors of tx,, tx,, ..., tr, are WFy,, WE,, ...,
W F,, respectively.

rules for this important case are given below.

7.4.1 Mutually Exclusive Transitions

The fuzzy Petri net corresponding to the mutually exclusive operation: (O, —
Oy, OR O, — Oy, OR ... OR O, — O,,), is shown in Figure 7.5. Here, sensors are
introduced to verify the states for soft objects. Therefore, the following operations
may be chosen based on fuzzy sensory information. For the sake of simplicity, we
assume the local fuzzy variables appearing in the following discussions are fuzzy
singletons. The results obtained can be generalized to the case of general fuzzy
numbers. The transitions which represent this type of operation are called mutually
exclusive, or, ME, transitions.

The fuzzy rule governing this mutually exclusive firing strategy is described

as follows:
if0< p. <0 theno = WF, x0%, 0% =% =...=0% =0;

if ' < p. <0 theno* =WF, xo%, 0" =% =... = 0% =0

if 07 < p. < 0, theno® = WF, x0% o' =...=0% =g =...=0" =0

if U7 < p. < 0°, then o9 = WFy, x 0%, 0" =0% =... =01 =0. (74)

Notice that the range [0,87] has been divided to v subranges, [0,6'), [6*,6%), ...,
[6v-1,8"], which are mutually exclusive. Only one transition from ty,, ¢y, .., tg, will
be fired. The selection of the transition is based on the real-time value of p.. The
ME transition acts like a “case” conditional statement in a high-level programming

language.

7.4.2 Deterministic and Nondeterministic Fuzzy Petri Nets

In this discussion, we have assumed that each transition ¢; in the net has
a constant weighting factor WF;, i.e., the fuzzy values of tokens in output places
for ¢; can be directly determined from the fuzzy values of tokens in corresponding
input places. This assumption is valid from the planning point of view where we can
guarantee a selected feasible sequence to reach from the initial state to the final state
when this sequence is executed. However, this assumption is not always correct from
the execution point of view. Some transitions, especially key transitions, may not
reach the desired result as expected after the corresponding operation is executed in
practice. Therefore, we distinguish deterministic and nondeterministic fuzzy Petri

nets to reflect the possible random properties of the transitions at execution time.

Definition 7.2 Deterministic fuzzy Petri net(DFPN): A fuzzy Petri net(FPN) in
which each transition t; has a deterministic reasoning rule for local fuzzy variables,

r%, and therefore a fixed mapping between input and output local fuzzy variables.

Definition 7.3 Nondeterministic fuzzy Petri net(NDFPN): A fuzzy Petri net(FPN)

in which there exists at least one transition t; which has a random reasoning rule

(I N il N Wi I/ T | 1

i [|

T

il

/_%Aé/ ** T

176

for local fuzzy variables. There is no fixed mapping between input and output local
fuzzy variables. The erpected mapping of local fuzzy variables are known corre-

sponding to the mapping of input and output token values.

Definition 7.4 Random transition: A transition which has a random mapping be-

tween input local fuzzy variables and output local fuzzy variables.

A DFPN contains no random transition. An NDFPN contains at least one
random transition. The fuzzy Petri net generated from the AND/OR net is an
example of a DFPN; however, during the execution of a planned sequence, some
transitions might have random properties. For example, in Figure 7.1, if we assume
ts cannot always guarantee the cutting to the correct size, then ts becomes a random

transition. This modified fuzzy Petri net is an example of an NDFPN.

7.4.3 Planning and Execution on the NDFPN with ME Transitions

If we model some key transitions in the DFPN as random transitions, the pre-
vious planning strategy may not be suitable for searching sequences in an off-line
planning mode because the net has become an NDFPN. To approach this problem,
we assume that the reasoning function for local fuzzy variables of all random tran-
sitions are their ezpected reasoning functions, and the resulting NDFPN will thus
become a DFPN. We can use the planning procedure on the DFPN as before to get
the expected correct sequences.

For the sake of simplicity, we first consider the case that t¥ is the only random
transition in the net, and retry of the operation t! is chosen as the error recovery
strategy. After t” is executed, a sensing transition defines a new local fuzzy variable
p; which determines the next firing through an ME transition. We assume an
expected sequence searched from a DFPN, of which all key transitions are assigned

the weighting factors for reasoning token values, is S1t4 Sty .. .48, 41, where Sy,

177

continue

sequence -
executing

implemented

| .
1 I
; global !
I]
I H

Figure 7.6: Repeated trial error recovery structure.

S2, -vvy Spy41 are subseqtrxernitizgé Wﬁich do not contaih aﬁsl key transitions, and ¢,
3, -+ t7 are r key transitions. We assume that after we execute ¥ during the
implementation of this task sequence, we may meet three possible cases:(Figure 7.6)

(1) Succeed: Based on the sensory verification operation, a ‘correct’ local fuzzy
variable is obtained after ¢/ is fired. We then go on executing the remaining part
of the sequence. The final actual sequence may be exactly the same as the planned
sequence.

(2) Retry and Succeed: Based on the sensory verification operation, we do not
obtain a correct local fuzzy variable following t¥. The refiring of ¢ is required.
This transition may be fired totally /(1 < { < M; M is a repair threshold) times.
The actual sequence which is executed may be(we consider sense and ty; as virtual

transitions for the sequence representation.)
S1t38aty . Si(t) Sipr .. 2 Sr g1,

(The specific mechanism for enabling this retry process using fuzzy values is dis-
cussed below.) 7 S o -
(3) Retry and Fail: After firing of t¥ I'(1 < I' < M) times, an unrecoverable

condition is detected for a soft object leading to global error recovery(firing of Sor)

A

i

L

Wi

wi!

n

mi |

|

[FETR——

[—

U

) |

|11

178

or halt. For example, a certain soft object or the included soft component, may
need to be discarded and replaced by a new soft object. At this time, we assume
the execution of the remaining part of the sequence is stopped. The actual sequence

which is executed for this case will be
SitsSaty ... Si(t:) (e U).

The selection of M is sometimes an important factor to implement a sequence.
And the selection may depend on different criteria for different key transitions. If
M is chosen too large, a transition loop has to be executed many times so that
the threshold is reached and the sequence can stop. If M is chosen too small, the
possibility for local error recovery for some key transitions will be lower. Moreover,

sometimes the error is due to the hardware mechanisms such as machines, processing

units, and so on. We may have several alternative transitions available for an identi-

cal logical transition. In the previous example, we may have two cutting machines.
Any planned sequence may choose one of these two machines when a cutting tran-
sition is fired. When a cutting machine causes an erroneous state on the processed
part, we may need to try another cutting machine for local error recovery, rather
than continuing using the former one. In other cases, a more extensive alternative
sequence may be employed, or a more general global error recovery sequence may
be initiated.

Figure 7.7 shows the global and local alternative error recovery for the peg-
cylinder assembly example. Figure 7.7(a) illustrates a feasible sequence to finish the
assigned assembly task. Figure 7.7(b) depicts that a global alternative error recovery
sequence may be called when a threshold of times for retry could not remedy the
insertion error. Figure 7.7(c) shows that local alternative error recovery may be
necessary when a cutting error is sensed by a size sensor near the cutting machine.
The subnets of the fuzzy Petri net corresponding to Figure 7.7(a), 7.7(b) and 7.7(c)
are illustrated in Figure 7.8(a), 7.8(b) and 7.8(c). For the sake of simplicity, hollow

-3

|\ ‘HI\I| !
bl

l: w

L RE

(e

|

- L

l“‘
L

te

an!

=
O
Holow Cytinder
(a)
Lubricaning
RETRY Machize
ERROR ?&m‘l

Hollow Cylinder Peg
Cuging
Mackine

®)

179

Hollow Cylinder

Cutting

SENSOR Machine
N
rocaL =%
ALTERNATIVE
ERROR RECOVERY

()

Figure 7.7: Error recovery for the peg-cylinder assembly example. (a) Planned

sequence. (b) Insertion error. (c) Size error.

180

cylinder is not considered as a soft component at this time.

In Figure 7.9, we illustrate a Petri net representation of multiple alternative
transitions for a key operation. Local error recovery is shown using a retry strategy
here which enables alternate transitions through adjustment of local fuzzy variables.
t¥, t5 and t4 are considered to be the transitions which accomplish the same subtask.
A sensing transition is introduced here to identify the token value in p;, and the
on-line selection of the following subsequences will depend on this sensed value.
Suppose originally, p; contains a token of which the fuzzy value is o'. The local
fuzzy variable of p; is p,(o). After t¥ is fired, p; contains a token with the fuzzy value
ol = o' x WF(t?), and the local fuzzy variable of p; is p;. Transition sense maps
the local fuzzy variable of the object to a sensing value, p;. The weighting factor
of sense is 1. Therefore, 0’ = o7, If ' < p;j < 6%, we will fire t}; for local error
recovery. If we assume the reasoning functions for local fuzzy variables are the saﬁe

as global fuzzy variables, We may select an « and define

1

_ t) = v <1 <L .
T s(t) = WF(t*), 1<i<3, a>0

WF(t) =

The new fuzzy value in p; will be

(0
(1 _ 1 © _ W F(t5)p{" (0)

A= WEE s V) A T W) 1 a

After m times through this loop,

” F(t‘ll) m-1 (0) (0)
p; < ...<p;’.
) ' 1

W F(t7)
- WPF(t) +

(m) _ (217
= (FE + o

el < (

Therefore, p,(k), pgk"l), ceny p,(o) is a strictly decreasing sequence.

If we divide the p range [61,6?) to three subranges, [8',6’), [¢,6"), and [8”,6?),
initially, pso) € [67,6%). After k, iterations, pfk‘) will fall into [#',8"). We can
therefore fire t; instead of t{ and at this time, pgk’) = (W%g%)k‘pso). If after k;

iterations for firing t4 we still cannot recover to a desired correct state, pfk"”k’) will

] | |

Ll (AT | [P]

Wil

L
bl

o

X

1l

[

181

® ©

Figure 7.8: The subnets of the fuzzy Petri net of error recovery for the peg-cylinder
assembly example. (a) Planned sequence: tiiststgtatstoliotrtiatia. (b) When an
insertion error occurs, and t;st;; subsequence cannot remedy the error, a global
recovery sequence t; will be used. (c) When a size error is found, a subsequence tgts
will be used to remedy the error.

182

J

! continue ;
\ :wqt:cnce od executing X
i implement the sequence |

i

1]
]]
. global X
1 I
] 1

Figure 7.9: Alternative local error recovery.

drop down to [#%,6') and at that time,

(kitha) _ WF(t]) Yo (
; WFE) +a WE#) +a

WE(t) i, o0

3

Following these iterations, we may succeed in recovery or drop down to the global
recovery or halt range, [0,8'). The above strategy, where p decreases with iterative
tries until it goes through all alternative ME transitions, provides a mechanism to
implement alternative error recovery. 7

7 More generally, we may define sequeﬁrrlcres which include transition loops for the

execution of certain transitions more than once:

Definition 7.5 Key-transition-loop sequence: A sequence which forms a cycle and
includes at least one key transition. The number of executions for the loop is

unknown prior to the execution.

From the above definition, we know that we cannot decide an actual exe-
cutable sequence in the off-line planning stage for key-transition-loop sequences.
Even though during the off-line planning stage, we can enumerate all possible se-
quences which reflect all possible directions for the ME transitions, this may re-

quire too much computer storage and time to generate all possible sequences. Even

e

I |

LD

MG

[l

BN N

i EL N)

WL

IR

Gl L e 1 s e 11

| N

(I

l‘\'F

e

rl

183

though all sequences are generated, choosing among them also remains a problem
because we cannot ensure which sequence will be successful at the implementation
stage. Therefore, we will develop a suitable compact representation for feasible task
sequences as well as an efficient way to execute them.

Before we map the system DFPN to an NDFPN for execution, we can gen-
erate all feasible, complete sequences which have correct precedence relationships
for operations. These sequences are expected sequences in the mapped NDFPN.
When we add ME transitions, the expected sequences are modified to incorporate
alternative error recovery sequences. We assume actual sequences can be modeled
as key-transition-loop sequences.

We generalize each key transition tx to a key transition subsequence Ty because
sometimes several operations will be needed to accomplish a key task. An expected

sequence is generated from the corresponding DFPN as:
E(Sequence) = $; TS T} .. . ST Siv1 ... T/ Ss 1 (7.5)

We further assume all key transition subsequences are transition loop subsequences.

Therefore, the executable sequences will become
Sequence = Si(T)Y | SI(TY)*S8(T)* U...uU

SUT ST) .. ST) Sivr - (T)) S (7.6)

where zt means executing r one or more than one time. Applying this sequence
representation to the real-time implementation, when we meet sign “+” in the se-
quence, further execution will depend on the current state of the system. The system
may go on executing the sequence, or re-execute the operations represented by the

transition loop subsequence, or stop executing the remaining part of the sequence.

184

7.5 Error Recovery

In the previous section, we described an approach to planning and execution
on the NDFPN with sensory verification. An unverified sensory state initiates either
a retry of the transition, or an alternative procedure, depending on the values of
the local fuzzy variables which occur. These procedures involving one transition
(perhaps one composite tra.néitibn) are viewed as local error recovery procedures
since they do not involve other key transitions or places in the net.

In the more general case, error detection may occur as part of a long sequence of
events within the plan, and the global error recovery may require either backtracking
and restart of the sequence, or selection of an alternative error recovery sequence.
In this section, we develop the formal definition of these strategies based on an
assumption of bidirectional, or brother, transitions which follow from the AND/OR
model of the original task. Two cases are considered. In the first case, there is
only one soft component in the net, and the retry of that sequence depends only
on returning to a known prior state where the process can be reinitiailized. In
the second case, there is more than one soft component and the retry becomes
more complicated since the intermediate states of other soft components must be
considered in the reexecution.

Alterrnati\}eﬂ error recovery in the élobal case follows also from these definitions,
but is more difficult to generalize completely: The B;kiracking component of al-
ternative error recovery is identical to retry, but the execution of the alternaﬁive
sequence cannot be predicted since, in general, it depends on the intermediate val-
ues of all of the soft components as they were left after the backtracking procedure.
While access to the alternative procedure can be guaranteed by the methods defined
below, the success of the alternative procedure is not necessarily predictable since
the initial state is unknown prior to execution. This situation leads to an emphasis

on the design of the alternative sequence to properly account for the occurrence of

[RN | |/ | win N W | W OMEH OEW R 0D s s m {

i

r

rmw i
i

185

a range of potential initial error states at the branch point. In a broad sense, this
approach leads to the development of design criteria for the alternative sequences
which would emphasize the independence of soft components between the alterna-
tives. This independence constraint would minimize the interaction between error
states of soft components in the primary sequence and new states in the alternative

sequence.

7.5.1 Error Recovery for One Soft Component

Definition 7.6 Brother transitions: When we map an AND/OR net to an ordinary
Petri net, each reversible arc will be decomposed into two transitions which are in

the opposite directions. We define these as brother transitions, t, and ;.

Lemma 7.1 For any two markings m! and m? in an ordinary Petri net, which is

mapped from an AND/OR net, m? 5 mlifm! % m2

Proof: Suppose m! = (m!,ml,...,m}), and m? = (m},m3,...,ml).

(1) Suppose the arc in the AND/OR net is an IST arc, because m! 5 m?, we

obtain
mi=m}, 1<j<n, j#, j#J2 and m}, =1, mj, =0, m} =0, m? =1.

i.e., {; moves one token in p;, to p;,. Therefore Z; will move the token in p;, back to

: %
p;,» which can be represented as m? = m!.

(2) Suppose the arc in the AND/OR net is an AND arc, because m! & m2,

we obtain
ml=md, 1<j<n, j#j1, §#Jas-erd # Jend # .
and
m;, = mi=..= m;, =1, m}kH =0; and m? = ml =...=m} =0, m?k“ =1,

186

or
m}l =m}2 =... =m}k =0, m;’m =1; ana'm;‘fl =m12-2 =... =m?h =1, mfk+1 = 0.
i.e., t; delete the tokens in pj,, p;,, ..., Pj,, and add one token in p;,.,, or, delete
the token in pj,,, and add one token in pj,, pj,, .- ., Pji, respectively. Therefore Z;
will delete the token in p;,,, and add one token in p;,, p;,, ..., pj,, respectively, or,
t; will delete the tokens in pj,, pj,, - .., pj, and add one token in pj, . , which can be
represented as m? 5 o,

Q.E.D. O

Definition 7.7 Brother sequence: If a sequence S is t1t;...1;, the brother sequence

of S, which is written as S, is ; {17 ...%;.

Theorem 7.1 For any two markings m! and m? in a reversible ordinary Petri net,
which is mapped from an AND/OR net, m2 3 m! if m! 5 m?, where § is a

transition sequence of t;t;...%4, [> 1.

Proof: Using the mathematical deduction method:

1. If I = 1, using Lemma 7.1, we conclude that the theorem is correct.

2. Suppose when ! = k and if the marking m? is reachable from m! by firing
S = tit5. .. tk, then m! is reachable from m? by S = ¥; Ty ... 5.

3. When [= k + 1, the marking m? is reachable from m! by firing §’' =
thta ... txtxy1. We assume the marking m’ is reachable when we fire ¢,¢;. .. ¢, from

the marking m?, and m? is reachable from m’ by firing ts+1. We know from Lemma

7.1, m’ is also reachable by firing f;; from the marking m?. And again using the

above supposition, m! is reachable from m’ by firing 5 {x—1 ...%;. Therefore, m! is
- reachable from m? by firing Tr4; & ... 0 = S

We conclude that the initial marking is reachable by the brother sequence

from the final marking, which is reachable by the original sequence from the initial

marking.

1
it

iy
I\i\

n
M

mili W i | i

il

IS Iy Ly (Y u R

i

0 W

]

r’

M "H'

I

187

NDFPN

Figure 7.10: An example of NDFPN with ME transitions.

Q.E.D. O
As a mechanism to initiate error recovery, we add a sensing transition, for
which the weighting factor of the reasoning function for the local fuzzy variable is a
random value. An example of an NDFPN with ME transitions is shown in Figure
7.10. In this example, the key transition ¢“ remains a constant transition. Place p;
will therefore receive an expected fuzzy token after t” is fired and the local fuzzy
variable in p, is fixed. We then fire the s.v.(sensor verification) transition, which
is assumed to be a random transition, to verify the real local state of p;. The new
local fuzzy value of the object represented by p, is thus dependent on the current
weighting factor of the transition s.v. The following execution of sequences through
ME transitions will depend on the current local fuzzy value associated with pg If
the state is acceptable, the originally planned sequence continues to execute. If the
state is not satisfied but may still be reached after some modification is made, we
fire ¢ and fire the s.v. transition once more. If an error, which cannot be recovered
locally, is detected, we may go back to the initial state and replace the corresponding
soft component.

The following theorem reasons about the recovery sequence from the original

188

task sequence. A definition and a lemma are shown first to introduce some notation.

Definition 7.8 Token defuzzifying function ,(S,):

Q.((c},0%,...,0™) = (0}, 03,...,00), (1.7)
where
1 ifd'#e,
oy = fo' 7 1<i<n.
e otherwise,

Definition 7.9 Transition defuzzifying function Qu(r,):

O(WF,WF,,...,WF,)) =(1,1,...,1). (7.8)

m

Lemma 7.2 If $0 5 S%, then Q,(5%) 5 Q,(S¥) when r, £ Qi(r,), where “£7

means “is assigned the value of”.

Proof: Suppose S = ¢;t;...t;. Since the weighting factors for all reasoning rules
for token values are defuzzified as r, 2 Q4(r,), from Sg 4 Sy, 59 = Q,(S;) and
WF, = 1, we obtain S} = Q,(S}). Using the mathematical deduction methoa, we
can obtain S 2 0,(S}). where 1 < i < k. Therefore, S} £ Q,(55). We conclude
that 2,(59) 5 0,(5%).

Q.E.D. O

Theorem 7.2 If S? 55 S, where §! = §;#TTS,t5T% ... Sit!, then 2,(S%) S Q,(5?)
when r, £ Q(r,), where 8> =1 §; §i-1... 52 &1

. 0 St k A . 0 St
Proof: Since 5} = S;, r, = ((r,) and according to Lemma 7.2, we get Q,(5;) =
ST
-—

Q,(S%), where §' = §;t4T7S,t5%5 ... Sity. Using Theorem 7.1, we obtain ,(S¥)
,(57), where

ST=SititiSutsty .. .Sty =T Sti T, .. . 4585 St S,

|

il

Wil

i @

Wi

K0 Wi ms o m &

i L il a

i

L

189

Using Lemma 7.1,
Q,(S541) 5 0,(87) = 0,(52) & 0,(53+),

therefore,

g

0,(5) Eoa,(s), 1<i<i-1

14

We can delete all pairs of ¢
will not be altered. Therefore, we conclude that ,(S¥) 5 Q,(5?2), where S§? =

7 and the sequences of states the system will follow

Q.E.D. O

The following algorithm states the procedure discussed so far. We may observe

that when we follow the global recovery sequence to replace the incorrect soft com-
ponent, we need not go back to the initial state. The replacement can be performed
just before the first key transition corresponding to this soft component. The sixth

step of the following algorithm implements this observation.

Algorithm 7.1 Ezecution of a Task Sequence with Sensory Verification and Error
Recovery(One Soft Component)

Input: The correct task sequence set and one element S = §1#{t{S2t5%5 . . . 525 Se41,
from this set, where ¢, t4, ..., t“ are s key transitions on the soft objects, the
initial global fuzzy state S7, and the DFPN from which S is generated.

QOutput: None.

By-product: The ezpected task is efficiently executed, or recovers to the initial state

should an unrecoverable error occur.

1. Add sensory verification transition s.v.; and one or more t’ to each key transition
t¥ as shown in Figure 7.10. Set the weighting factor of r, for each new t¥" and

s.v.;asl. M =0.

190

2. Execute the next transition in the sequence until we meet a key transition t?,

fire it, and go to 4.
3. If we reach the end of the sequence, exit.

4. Fire the sensory verification transition s.v.;, get the token of new local fuzzy

variable p; in output place p;.

©

If p; € [0,6}) and M reaches an upper bound, fire ¥ &; 5;_; ... 51, notify the

high level controller and exit.

6. If p; € [0,9}-), and there is no alternative global sequence, or, all alternative
global sequences have been tried, WF (%) = 1/[T., P, fire 7 &; Si_; ... s,
M=M+1 WF() =1,goto 2.

If p; € [0,6]), and there is a next alternative global sequence, WF(%¥) =
1/, P, fire T S, iy ... 81, M = M+1, WF(%¥) = 1, choose the alternative

=

sequence and go to 2.

8. If p; € [6},6%), and if for this key operation, there is no alternative transition,

fire t' and go to 4, else, go to 10.
9. Otherwise, go to 2.

10. Choose an alternative transition for this key operation to fire, and then go to

4.

7.5.2 Error Recovery for Multiple Soft Components

Multiple soft components are often present in a robotic workcell. A fuzzy
marking and representation strategy for multiple soft components during different
stages of operations such as assembly, disassembly, and 75T, has been discussed in

[12, 20]. In this subsection, we show how one of the soft components recovers from

'l

| i

‘,,
1

i

il

ik

K

i
]

it

o
|Hi‘

[

191

an intermediate fuzzy state, if error conditions are detected for this component or a
subassembly which contains this component. The method for execution of the task
sequence with sensory verification and error recovery for this case is the same as the
single soft component case discussed in the last subsection.

For a system which contains one soft component, when the system recovers
from errors back to the initial state and the component is replaced by a new com-
ponent or repaired, the original task sequence could be re-executed without any
modification. For a system which contains multiple soft components, when the sys-
tem goes back to the initial state and one soft component is replaced, the states
of other soft components are in their intermediate fuzzy states. If we re-execute
the same task sequence which was planned originally, we are expected to reach
another failure state. To solve this problem, we may add a sensory identification
procedure before each key transition. In the following theorem, we propose an al-
ternative method to automatically modify the original task sequence after one error

component is repaired or replaced.

Definition 7.10 Sequence masking operation “—”: A set of transitions A = {t,,13,
..., ta} are deleted from a sequence of transitions, S, i.e., we assume S = St Sats ...
t+Sky1, where S; is a subsequence of 0 or more transitions which does not contain

t;,1<i<k+1,1< 7 <n. Therefore,
S—=A=8t80.. tSesr — {tirtzy - ta} =8182.. . Sk41, 1< k<0, (7.9)
Definition 7.11 Sequence concatenation operation “+”: Suppose |
Si=tits. . .tr, Sz =trsitrsz. . tny
then

81 + 82 = t1t2 e t,- + t,-+1t,-+2 e tn = t1t2 [N t,-t,.+1t,-+2 e tn. (710)

192

Definition 7.12 Brother transition set: Given a transition set A, A = {t;,t2,...,t,},
its brother transition set, which is denoted by A, is A = {t;,%3,...,t.}, Where ; is

the brother transition of ¢;, 1 <1 < n.

Definition 7.13 Complete transition set A°; Given a transition setA = {t1,t2,...,ta},

its corresponding complete transition set A=A U A = {t;,T1,t2,%2,-+ -, tn,tn}-
Theorem 7.3 If S = t%4?...t", A° = {¢;,%,t2,82,...,1t,,1,}, then
S—A =8 - A" (7.11)

Proof: (1) If t* ¢ A°, then ' ¢ A°, for 1 < i < n. Because if we assume £/ € A°,
then t' = ¢; or t' = fj, both of which will lead to a contradiction that ' € A°.
Therefore,

S-A=8=8-4"
(2) If there exists at least one transition of ¢' which belongs to A°. For the sake of

simplicity, we assume {t!,%2,...,t"} N A° = {t'} and ¢/ = ¢;. Then,

S — A =12, -1+l v — Ac = 12 -l e

e N T E o Y o S P e S Lo U Y I TR I G\

=g, g, pr— A= 8 - A°.
Q.E.D. O

Theorem 7.4 If 57 A S;, S = t't?...tF and when S is executed, it stops at ¢,
1 €1 < k. Then, after error recovery to the initial state and the jth soft component
is repaired or replaced, the resumption to the intermediate state where the failure
happens, is guaranteed, if the task sequence from the initial state after recovery is

modified as

S=t? ot —Aasyasy. . Uai UJasa U Ay + e (7.12)

W O e wnom

O

[T Wi Wi W i il W0 W m

(YKL
“

i

i

S ARA |

' "

[

e

193

where A, represents the set of feasible key transitions for the pth soft component,

l1<p<sr.

Proof: Since S A S:, and S = t142...t'...t*, which stops at t', according to

Theorem 7.2, the recovery sequence is then S, = t#8 8-....5; 81, where
335 S =T, m-(asyasy. . Ua, UJaiyasa U - -Uad.

When we reach the initial state, we don’t fire any key transition, therefore, the
fuzzy state for each soft object does not change. After we replace the jth soft
component which is not processed, we should process it to its desired intermediate
state. Therefore, the subset of the key transition set for jth soft component is refired

and the modified sequence is

s=tt12 o (asUasy...Ua, UasU---Uag + e+ ¢

Q.E.D. O

7.6 An Algorithm for Generating an Executable fuzzy Petri Net

We have already discussed the basic theory of reasoning in a fuzzy Petri net
and its application in error detection and recovery. After the planning stage, we
may get a ‘script’ of operations sequences for execution and when an error occurs,
we may refer to the net representation and automatically find a recovery sequence to
get back to a previous state, and then follow a possibly modified sequence to recover
to the interrupting state. Sometimes because of the high probability of errors during
the implementation of a sequence, we are required to create an ezecutable fuzzy Petri
net, so that more flexibility of alternative operations sequences and robust on-line

selection of enabling transitions can be incorporated. In this approach, the same

194

fuzzy reasoning rules for r, can be created with appropriate weighting factors. The
first step for creating an executable fuzzy Petri net is to find a feasible, complete,
and correctly ordered sequence from the original system fuzzy Petri net. The next

step is described by an algorithm shown below.

Algorithm 7.2 Generation of an ezecutable fuzzy Petri net for implementation of
a robotic task(We assume for this discussion that one soft component exists in the

system, but this can be generalized.)

Input: A fuzzy Petri net generated from an AND/OR net for the system, a feasible,
complete, and correctly ordered task sequence, t1t;...t,, searched from the net.

Output: An executable fuzzy Petri net.

1. Suppose (i) all weighting factors of r, for key transitions are WF,, WF,, ..., WE;

(i) all thresholds(ranges of real numbers) for m transitions in the system
are 0, 0, ..., On; (i) ¢, ti,, ..., ti, are key transitions in the sequence,
1y < i3 < ... < 1,; (iv) Let L be the initial foken value of the soft object(if
r=0,then L =10). M=0. Initl =1 Iit2=L H=10ifr =0,

otherwise, H is assigned an integer.
2 M=M+11fM<r gotod.
3. For all ¢;, Initl < j < n, 0; = [Init2, H).

4. For any transition ¢; which has no threshold, if its brother transition f; has

threshold 4, assign 8 to t;, otherwise, assign [L, H) to t;. Exit.
5. For all t;, Initl <5 <y, 0j = [Im't?, Init2 x W Fy).
6. Initl = iMj-ml:VInitQ = Init2 x WFuy. Go to 2.7 7

In real-time execution of the operations sequence on the executable fuzzy Petri

net, we need to model sensor and sensing operations in the net to handle uncertainty.

T

[

L

W o W L

|

i

il

L i M

v

L LLLL
Gimiin

I

e
il

ihe

195
After sensing transitions are added to the net, the oﬁtcome on-line local fuzzy values
depend on the detected sensor value mapping, i.e., r%(S;), where r} is a sensing
mapping function, and S; is a sensed value.

Two types of sensing are used in the fuzzy Petri net. One is called discrete
sensing, and the other is called continuous sensing. Discrete sensing indicates that
ri and ri(S;) take on discrete values, while continuous sensing means that ri and
rf,(S;) take on continuous vaiues. Af'ter we obtain an executable fuzzy Petri net
using the above algorithm, we add sensing transitions near some key transitions
and after each key transition is fired, we fire the sensing transition, and let the local
fuzzy variables of the sensing output decide the following enabled transitions. Then,
given the initial state, a sequence will be automatically followed to reach the ﬁna‘l
state and perform error recovery operations or subsequences if necessary.

A simplified version of the peg-cylinder assembly system(without robot}, its
executable fuzzy Petri net, and the net with discrete sensing and continuous sensing
added, are shown in Figure 7.11. In Figure 7.11(b), cut, lubricate, and insert(or
followed by several loops of remove, insert) is the only feasible, complete, and correct
sequence found on-line. In Figure 7.11(c), after the ‘cut sensing’ transition is added,
we assume ‘cut’ transition having a weighting factor of 1 and ‘cut sensing’ transition
having a continuous sensing value 1 < WF(S;) < 2. Depending on this value, a
repeated trial error recovery may be necessary if the peg is not cut to the right size.
For the ‘insertion sensing’ transition, if the insertion operation succeeds, a final
state will be reached that no transition is enabled anymore. Otherwise, a ‘remove’

transition may be fired to invoke a global error recovery subsequence.

7.7 Examples

In this section, we show two examples, one of which is oriented to alternative

local error recovery, and the other to alternative global error recovery. When a

196

L. LUBRICATE

(a) (b)

9: [0.2,0.6] 3(___] LUBRICATE

CUT SENSING

e 8:(0.1,0.2) 1 8: [06,1.0)
Continuous Sensing

Discrete Sensing

w01
8:[0.6,1) M8 . = NOT INSERTED
INSERTION SENSING 2: [FINSERTED

©

Figure 7.11: An example for the executable fuzzy Petri net. (a) Petri net example for
peg-cylinder assembly system(without robot). (b) The executable fuzzy Petri net(no
sensors). (c) The net with discrete sensor(global error recovery) and continuous
sensors(repeated trial error recovery).

b

Il

LI

[[

[T

I

L |

[T

[,‘ pun

197

NDFPN
Pio QRPM
t t
cml 5 6
' P2
2
CUT
L
cm?2 tio
matching

Figure 7.12: An error recovery mechanism for ¢5 in Figure 7.1.

local recovery procedure fails to recover the error after a finite number of retries, a
backtracking path will be automatically followed to an earlier stage of the task or
the initial state, then, the original sequence will be executed again, or, an alternative

sequence will be called to replace the original one.

7.7.1 Example of Alternative Local Error Recovery

In this subsection, we show sensor-based alternative error recovery for the
example shown in Figure 7.1, where a fuzzy Petri net representation is illustrated.
As we see from Figure 7.1, ts is a key transition with a weighting factor 2. Based
on the algorithm for ezecution of task sequence with sensory verification and error
recovery, we add an s.v. matching transition, and cml, cm2 transitions for local
error recovery. cml corresponds to the first cutting machine and em2 corresponds
to the second cutting machine. The modified partial fuzzy Petri net is shown in
Figure 7.12. Notice that it’s not necessary to add a special transition for decreasing
p because in this case, each unsuccessful matching will automatically decrease the
fuzzy value.

Initially, the prime token value ¢'° = 0.1, WFs = 2, o' =2 x0.1 =0.2, and

198

the local fuzzy variable p;; = o'2. The three ranges [0,6'), [9,6?) and (6?,6°)] are
[0,0.12), [0.12,0.18), [0.18,0.2], respectively, for piz in p1z. [0, 8?) is divided into two
subranges, [0.12,0.15) and [0.15,0.18), so that the alternative error recovery with

two cutting machines can be implemented. For transition t9, 7' is represented as
Pt = p‘l’lzd x W Fig x (1 — match) + match x WFjg x 0.2,

match = 1 if WF;g > 0.94, otherwise, match = 0. Moreover, WFy, = WF,; = 1.
We list three possible cases of derivations of sequences as follows:

Case 1: The weighting factor of random transition, matching, is W Fig = 0.95.
Thus, p12 = 0.2 x 0.95 = 0.19 € (8%, 8°] and the sequence succeeds at this point.

Case 2. WF = 0.85, p1z = 0.2 x 0.85 = 0.17 € [6',67). cml will be
fired(cutting machine 1 is used again) and py2 = 0.17. If again, WF;y = 0.85,
p1z = 0.1445 € [0.12,0.15). ¢m2 is fired at this time and we suppose W Fye now
becomes 0.98. Correspondingly, p12 = 0+ 0.98 x 0.2 = 6.196, therefore, the local
error recovery succeeds in this case.

Case 3. At the last step of the above case, if we assume W Fig is still 0.85.
Correspondingly, p12 = 0.85 x 0.1445 = 0.1226. c¢m2 is fired again and we suppose
W Fyg is still 0.85, then p;; = 0.1042 € [0,0.12). Therefore, a global error recovery

back to the initial state is necessary and the peg should be replaced.

7.7.2 Example of Alternative Global Error Recovery

Suppose we have three blocks, A, B, and C. The robot is required to assemble
these blocks and the final configuration for this task is shown in Figure 7.13(a). The
AND/OR net representation of all feasible components, A, B, and C, all feasible
subassemblies, AB, BC, and AC, and the assembly, ABC, and their geometric
relations, are illustrated in Figure 7.i3(b). For the sake of simplicity and symmetry,
we assume the assembly task should start from putting A on the platform first.

Of course, more complicated cases could also be considered and the generalities of

L & il a I 1

W [l

Kil & i Wi il m mili

i

il

i

-

I
Ui

'
i

1

‘ [T,

199

B
A C
VLA eI
(a) ()

Figure 7.13: (a) The final configuration of the assembly of blocks A, B, and C. (b)
The AND/OR net representation of this assembly task.
the following discussion will not be lost. Using the mapping algorithm, we obtain
a corresponding Petri net. Figure 7.14 shows a subnet of this Petri net which
does not include subassembly BC and the related transitions. In this net, fg is a
nondeterministic transition in the sense that we don’t know whether the assembly
operation of AC and B could be accomplished successfully because of the imprecise
distance between A and C when AC is obtained.

We may consider AC as a soft object and the distance between A and C in the
subassembly AC as a soft parameter. We also consider g as a random transition
with a weighting factor W F(tg). The local fuzzy values for AC and ABC are paic

and papc, respectively, and the firing rule r, for tg is
paBc = pac X WFg x (1 — match) + match x WFg x 1,

where match = 1 if WFg > 0.98, otherwise, match = 0. All other transitions in the
net are deterministic and having weighting factors of 1. The firing rules of these
transitions are the same as shown in (7.1), (7.2) and (7.3).

There are four possible task sequences for this example, i.e., tyt, t3te, tot1tsts
and t3t4tzt;. Suppose we choose tstg to execute. If the distance between A and C

is too small to fit B inside them, tgt5 will be fired several times. If the random

Figure 7.14: The subnet of the Petri net representation of the exérnple of assembling
A, Band C.

weighting factor for te is below 0.98 for several consecutive times, the local fuzzy
value in AC will strictly decrease and eventually force a global error recovery of
this sequence, i.e., t4 will be fired and AC decomposed. Then, either an alternative
planned task sequence, t;t7, or, the originally chosen sequence, t3ts, is reexecuted.
In the latter case, C is reassembled with A and the distance between A and C at
this time may be adjusted and the sequence may be successful. Otherwise, if several
trials of the sequence are performed and it still fails, an alternative task sequence
will be forced to execute in place of the original one by the system supervisor.
Figure 7.15 visually shows the error recovery procedures discussed above. A partial
executable fuzzy Petri net, with continudusrﬁsérnsing for assembling AC and discrete
sensing for assembling ABC, are shown in Figure 7.16. Because there is no soft
component existing in the system, we assign [1,2) to each transition and the initial

tokens are all 1 based on the algorithm shown in Section 7.6.

N owEm oW W W EE0 Wi mEN mE W E

i |

nen o MED Wm0 WE

o

201

—_— —_— —

A A C A C A C
T77177777777777777 7T7777777777777777 TT77777 77777777777 7777777 77777777777

(@) ®) (©) @

< -

A C

B
/ 77777777 7777777777
— —_—
A C A C A)
JP7l7777 777 /777777 P77l 7777777777 TP77777 77777777777

(e ® @®

AlB

PP77777 77777777777

@

Figure 7.15: The possible errors and the corresponding recovery procedures for the
task to assemble A, B, and C. (a) Put A. (b) Put C. (c) Put B between A and C
and fails. (d) Same as (c). (e) Same as (c). (f) Remove B. (g) Remove C. (h) Put
C, possibly with distance adjusted. (i) Follow an alternative sequence and put B.

Alternative global sequences
INTT: 1 g 9

6: [1,2) CONTINUOUS
SENSING

DISCRETE
SENSING

Figurer7.16: The fuzzy Petri net repféséntation for ABC assémbly tasks.

M W W e

Wil |

Wil

_.=
L]
—

/IR U I

i

i

mill

203

7.8 Conclusion

In this chapter, we introduce a novel sensor-based error recovery strategy based
on the fuzzy Petri net representation of robotic workcells and the fuzzy property
of sensory verification. Fuzzy Petri nets are used to model fuzzy process state,
including uncertainty of local parameters and a global fuzzy variable associated with
‘degree of completion’. Using fuzzy Petri nets, we can enforce required precedence
of operations for a set of ‘key’ operations, and represent ‘soft’ objects which have
changing properties or internal states.

We have shown in this chapter an approach to implementation of embedded
error recovery strategies which change the precedence of operations by sensing fuzzy
values. The fuzzy information propagates and resequences operations to accomplish
task goals. When the expected information is obtained, the sequence will not be
altered. However, when an error is detected, the local recovery loop or the global
recovery path will be followed to guarantee that correct fuzzy degrees of completion
of soft objects are reached. After the global recovery is finished, different sequences
for re-execution are proposed for the case of a single soft component, and that of
multiple soft components, respectively. Fuzzy values discussed in this chapter are
important for searching in the planning stage as well as for sensing, verification,
detection, and reasoning about sensory conditions in the execution stage.

Future directions of this work will concentrate on the applications of the theo-
ries proposed in this chapter to more generalized robotic systems and on the decom-
position of high level task sequences into lower level motion and execution sequences,
so that a hierarchical error detection and recovery mechanism may be incorporated.
Sensor-based control and sensor-based verification and error recovery can be inte-
grated, and sensor resources can be coordinated in the whole robotic system. Such
a sensor-based robotic control workcell would be more flexible, adaptive, and fault-

tolerant and would reduce the effort required for implementation of new tasks.

CHAPTER 8
CONCLUSIONS

8.1 Summary

The principal contribution of this thesis is to task sequence representation,
planning, and error recovery for robotic systems. Both plan generation and plan
execution are modeled by Petri nets and fﬁizy Petri nets, which provide an efficient
methodology to simulatg qu analyze the properties of the systems. The fuzzy
Petri net is shown to be a prémiéfﬁg tool to irrxcoﬁrporatre uncertainty into the system
model. This treatment of modeling uncertainty using the fuzzy Petri net and its
applications to robot fask planning and sensor-based érror recovery has provided a
framework for analysis and design in many problem areas. The work presented in
this thesis should also stimulate further interest and research in this direction.

Using the methodology and theory presented in this thesis, we are able to rep-
resent, plan, and execute feasible operations sequences for a specific robotic task.
The input to our planner is the descriptions of the components and geometric re-
lations among components, feasible operations, initial and final system states, and
the working environment. We could use this information to build up a system rep-
resentation for robotic task sequéfxces'.w:ﬁiis model is then majﬁﬁed to a Petri net,
which will be decomposed to lower level representations based on the specifications
of the executioﬁ-level devices. On any level of decomposition, we may search one
or more feasible sequences and may want to analyze the properties of the system
including safeness, liveness, and reversibility. After fuzzy Petri nets are introduced
to represent uncertainty and incompleteness with the system model, we are able to
reduce the search space for sequences in the Petri net model by marking subgoals

using global fuzzy variables, and we can monitor the degree of completion during

i

I

Wi

mi i

I

O E WL s ml

i ®il

il |

LTI
Wi

}

[

the planning process for verifying and pruning infeasible partial sequences.

One major approach in this work is that three kinds of fuzzy variables are
incorporated in the fuzzy Petri net model and the reasoning mechanisms and fuzzy
state representation could be built into the fuzzy Petri net. A local fuzzy variable
is used to characterize lower level mechanical and geometric parameters of a device
or object in the robotic system, a fuzzy marking variable is introduced to denote
the uncertainty that an event occurs, and a global fuzzy variable characterizes the
degree of completion for a global task. In particular, fuzzy reasoning rules for three
kinds of operations, assembly, disassembly, and IST operations derived from the
robot assembly system, are developed to reason about the global fuzzy variables.
Mutually exclusive transitions are used to select and reason about the execution of
robotic actions on-line based on both local and global fuzzy variables. Different error
recovery strategies including retrying error recovery, local alternative error recovery,
and global alternative error recovery are shown to be efficient and reliable to execute
a task sequence under uncertainty.

Some basic cases of fuzzy Petri nets are analyzed based on local fuzzy variables
and fuzzy marking variables. In analyzing the case of transition firing depending on
input local fuzzy variables, a subclass of the case was found to satisfy the liveness,
safeness, and reversibility under a set of conditions. One advantage of using local
fuzzy variables to represent the state of execution-level devices including the robot
is that the theory of fuzzy sets and fuzzy mathematical operations can be directly
used to compute and analyze the uncertainty using fuzzy numbers.

In this research, the efficient, reliable, and robust planning and execution of
robotic task sequences are guaranteed through the hierarchical task decomposition
and implementation of error recovery strategies incorporated in the Petri net. Our
results represented in this thesis provide a novel methodology and applications of

robot task planning with uncertainty.

206

8.2 Future Work

A number of research directions deserve further consideration beyond the re-

sults presented in this thesis.

o The selection and evaluation of all feasible task sequences based on the AND/OR
net and Petri net representation of task sequence plans is an important exten-
sion to the work done here in task sequence planning. In particular, for the
selection and execution of parallel operations during the planning process one
needs to analyze all feasible enabled transitions in terms of resource conflicts
and other factors including timing, cost, flexibility, and reliability. Another
possibility is to execute in parallel an error recovery éequence and some op-
erations in the original sequence when the error is independent with these
operations. Analysis of uncertainty with parallel execution of operations also

needs to be performed.

o The synthesis of planning strategies under unéertainty within a generic hierar-
chical structure for decomposition may be used to handle errors which appear
during the decomposition of a task sequence towards the final net. For exam-

~ ple, the working environment of the execution of the sequence may be changed
not by sensing and manipulation, but by other random factors. Thus, a sen-
sory verification procedure might be necessary to check some unsafe substate

before the substate is processed by the current operation.

e A planning for planning problem may be important to ensure the property
of reversibiiif}f of the final net during decomposition. Sometimes, we need to
recover from an error to the initial state while retaining some lower level plans
for future refiring and discarding of others. The coordination and scheduling

for processing these plans are incorporated into the recovery procedure. When

R

11—l

R

it T I

i

o
<
-1

a sequence is reinitiated from the initial state, we should guarantee state reser-
vation for those waiting components and execution of unchanged plans which

might be verified.

More general cases of fuzzy Petri nets and their properties should be explored
and analyzed when fuzzy Petri nets are used to model more complex systems.
It might be useful to look at the interrelationships among the three kinds
of fuzzy variables during fuzzy reasoning by rules. More detailed lower level
representation and integration of these three variables are needed to expose
the necessity to use them in modeling uncertainty. Other forms of non-fuzzy

probabilistic reasoning could also be incorporated within this framework.

The design of reasoning structures within Petri nets is another important
issue to design a fuzzy Petri net. Many learning techniques can be explored
to generate a rule base. Neural networks provide a good method to represent
and train these rules. The mapping from real sensory data to fuzzy numbers

for reasoning in the fuzzy Petri net is also an interesting topic.

Fuzzy Petri nets proposed in this thesis should be applied to modeling, anal-
ysis, and simulations of other related areas such as knowledge representation,
knowledge reasoning, design of expert systems, discrete event systems, flexi-
ble manufacturing systems, scheduling, and other kinds of applications which
need to handle uncertainty. The feedback from applications and implementa-
tion may bring revisions and enhancements to the theory of fuzzy Petri net

initiated in this thesis.

(1]

2]

[3]

[4]

(8]

[10]

REFERENCES

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley: Reading, MA, 1974.

R. Y. Al-Jaar and A. Desrochers, “Petri Nets in Automation and
Manufacturing,” in Advances in Automation and Robotics, G. N. Saridis, ed.
Vol. 2, JAI Press, pp. 153-218, 1991.

P. Alanche et al., “PSI: A Petri Net Based Simulator for Flexible
Manufacturing Systems,” in Advances in Petri Net 1984 (Lecture Notes in
Computer Science 188), G. Rozenberg, Ed. New York: Springer-Verlag, pp.
1-14, 1984.

G. Berthelot, “Checking f’r-o;;érties of Nets Using Transformations,” in
Advances in Petri Nets 1985 (Lecture Notes in Computer Science 222), G.
Rozenberg, Ed. New York: Springer-Verlag, pp. 19-40, 1985.

G. Berthelot, “Transformations and Decompositions of Nets,” in Advances in
Petri Nets 1986 (Lecture Notes in Computer Science 254), G. Rozenberg, Ed.
New York: Springer-Verlag, pp. 359-376, 1986.

A. Bourjault, Contribution a une Approche Méthodologique de L’Assemblage
Automatisé: Elaboration Automatique des Séquences Operatoires. These
d’Etat, Université de Franche-Comté, Besancon, France, Nov. 1984.

R. A. Brooks, “Symbolic Error Analysis and Robot Planning,” The
International Journal of Robotics Research, Vol. 1, No. 4; pp. 29-68, Winter

1982.

A. Camurri and P. Franchi, “An Approach to the Design and Implementation
of the Hierarchical Control System of FMS, Combining Structured Knowledge
Representation Formalisms and High-level Petri Nets,” in Proc. of IEEE
International Conference on Robotics Automation, pp. 520-525, Cincinnati,
OH, 1990.

T. Cao et al., Automated Handling of Garments for Pressing, Year One Final
Report, The Educational Foundation for the Fashion Industries and Center
for Manufacturing Productivity and Technology Transfer, Jan. 1991.

T. Cao and A. C. Sanderson, Task Sequence Planning in a Robot Workcell
Using AND/OR Nets, Technical Report, CIRSSE #94, Rensselaer
Polytechnic Institute, June 1991.

il

i Wi m O Rl W N W

mi

1

| M

R

n i

'
[

e
W

[11]

(12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

21]

[22]

23]

209

T. Cao and A. C. Sanderson, “Task Sequence Planning in a Robot Workcell
Using AND/OR Nets,” in Proc. of IEEE International Symposium on
Intelligent Control, pp. 239-244, Arlington, VA, Aug. 1991.

T. Cao and A. C. Sanderson, “Task Sequence Planning Using Fuzzy Petri
Nets,” in Proc. of IEEE International Conference on Systems, Man, and
Cybernetics, pp. 349-354, Charlottesville, VA, Oct. 1991.

T. Cao and A. C. Sanderson, “Automatic Decompositions of Assembly
Sequence Plans,” in Proc. of Third Annual Conference on Intelligent Robotic
Systems for Space Ezploration, pp. 19-28, Troy, NY, Nov. 1991.

T. Cao and A. C. Sanderson, “Sensor-based Error Recovery for Robotic Task
Sequences Using Fuzzy Petri Nets,” in Proc. of IEEE International Conference
on Robotics and Automation, pp. 1063-1069, Nice, France, May 1992.

T. Cao and A. C. Sanderson, “Task Decomposition and Analysis of Assembly
Sequence Plans Using Petri Nets,” in Proc. of Third International Conference
on Computer Integrated Manufacturing, pp. 138-147, Troy, NY, May 1992.

T. Cao and A. C. Sanderson, “AND/OR Net Representation for Robotic Task
Sequence Planning,” IEEE Trans. on Robotics and Automation, in review.

T. Cao and A. C. Sanderson, “A Fuzzy Petri Net Approach to Reasoning
about Uncertainty in Robotic Systems,” in Proc. of IEEE International
Conference on Robotics and Automation, Atlanta, GA, May 1993, in press.

T. Cao and A. C. Sanderson, “Variable Reasoning and Analysis about
Uncertainty with Fuzzy Petri Nets,” in Proc. of 14th International Conference
on Application and Theory of Petri Nets, Chicago, IL, June 1993, in press.

T. Cao and A. C. Sanderson, “Task Decomposition and Analysis of Robotic
Assembly Task Plans Using Petri Nets,” Journal of Robotic Systems, in
review.

T. Cao and A. C. Sanderson, “Task Sequence Planning Using Fuzzy Petri
Nets,” IEEE Trans. on Systems, Man, and Cybernetics, in review.

T. Cao and A. C. Sanderson, “Sensor-based Error Recovery for Robotic Task
Sequences Using Fuzzy Petri Nets,” IEEE Trans. on Systems, Man, and
Cybernetics, in review.

T. Cao and A. C. Sanderson, “Representation and Analysis of Uncertainty
Using Fuzzy Petri Nets,” Journal of Intelligent & Fuzzy Systems, in review.

J. Cardoso, R. Valette, and D. Dubois, “Petri Nets with Uncertainty
Markings,” in Advances in Petri Nets 1990 (Lecture Notes in Computer
Science), G. Rozenberg, Ed. New York: Springer-Verlag, pp. 64-78, 1990.

210

[24] S. Chen, J. Ke and J. Chang, “Knowledge Representation Using Fuzzy Petri
Nets,” IEEE Trans. on Knowledge and Data Engineering, Vol. 2, No. 3, pp.
311-319, Sep. 1990.

[25] C. L. Chen, “Automatic Assembly Sequences Generation by Pattern
Matching,” IEEE Trans. on System, Man, and Cybernetics, Vol. 21, No. 2,
pp-376-389, March/April, 1991.

[26] J. M. Colom, J. Martinez and M. Silva, “Packages for Validating Discrete
Production Systems Modeled with Petri Nets,” in Applied Modeling and
Stmulation of Technological Syst., edited by P. Borne and S. G. Tzafestas,
North-holland, pp. 529-536, 1987. : :

[27] F. Commoner, “Deadlocks in Petri Nets,” Wakefield, Applied Data Research,
Inc., Report # CA-7206-2311, 1972.

[28] J. A. Darringer and M.W. Blasgen, “MAPLE: A High Level Language for
Research,” in Mechanical Assembly, IBM Research Report RC 5606, IBM T.
J. Waston Research Center, Yorktown Heights, N.Y., 1975

[29] T. L. De Fazio and D. E. Whitney, “Simplified Generation of All Mechanical
Assembly Sequences, " IEEE Journal of Robotics and Automation, Vol. RA-3,
No. 6, pp. 640-658, Dec. 1987. Also see corrections on the same journal, RA-4,
No. 6, pp. 705-708, Dec. 1988.

[30] Edsger W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, Vol. 1, pp. 269-271, 1959.

[31] C. J. Divona et al., “ A Teleoperation for On-Orbit Manipulation,” in Proc. of
Remote Systems and Robotics in Hostile Environments, pp. 143-149, Pasco,
Washington, 1987.

[32] B. R. Donald, Error Detection and Recovery in Robotics, Lecture Notes in
Computer Science 336, New York: Springer-Verlag, 1989.

[33] H. A. ElMaraghy and J. M. Rondeau, “Automated Planning and
Programming Environments for Robots,” Robotica, Vol. 10, No. 1, pp. 75-82,
1992.

[34] M. Erdmann, “Randomization in Robot Tasks,” The International Journal of
Robotics Research, Vol. 11, No. 5, Oct. 1992, pp. 399-436.

[35] P. J. Fielding, F. DiCesare, and G. Goldbogen, “Error Recovery in
Automated Manufacturing through the Augmentation of Programmed
Processes,” Journal of Robotic Systems, Vol. 5, No. 4, pp. 337-362, Aug. 1988.

s W {

il

;i

L gl W Wi W I i0 W mmn o m o MW

K

e

211

[36] R. Fikes and N. Nilsson, “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving,” Artificial Intelligence, 2: 189-208,
1971.

[37] R. Fikes, P. Hart, and N. Nilsson, “Learning and executing generalized robot
plans,” in Readings in Artificial Intelligence, N. Nilsson and B. Webber, Eds.
Palo Alto, CA: Tioga, pp. 231-249, 1981.

[38] M. L. Garg, S. I. Ahson, and P. V. Gupta, “A Fuzzy Petri Net for Knowledge
Representation and Reasoning,” Information Processing Letters, Vol. 39, pp.
165-171, 1991.

[39] H. J. Genrich and K. Lautenbach, “Systems Modeling with High-Level Petri
Nets,” Theoretical Computer Sciences, 13, pp. 109-136, 1981.

[40] H. J. Genrich, “Predicate/Transition Nets,” in Lecture Notes in Computer
Science, No. 254, pp. 207-247, New York: Spring-Verlag, 1987.

[41] M. Gini and G. Gini, “Towards Automatic Error Recovery in Robot
Programs,” in Proc. of 8th International Joint Couference on Artificial
Intelligence, pp. 821-823, Karlsruhe, Germany, Aug. 1983.

[42] A. Giordana and L. Saitta, “Modeling Production Rules by Means of
Predicate Transition Networks,” Information Sciences, 35, pp. 1-41, 1985.

[43] J. Hendler, A. Tate, and M. Drummond, “Al Planning: Systems and
Techniques,” AI Magazine, pp. 61-77. Summer 1990.

[44] M. A. Holiday and M. K. Vernon, “Performance Estimates for Multiprocessor
Memory and Bus Interference,” [EEE Trans. on Computers, Vol. C-36, pp.
76-85, Jan. 1987.

[45] L. S. Homem de Mello and A. C. Sanderson, “An AND/OR Graph
Representation of Assembly Plans,” in AAAI-86 Proc. of the Fifth National
Conference on Artificial Intelligence, pp. 1113-1119, 1986.

[46] L. S. Homem de Mello and A. C. Sanderson, “Planning Repair Sequences
Using the AND/OR Graph Representation of Assembly Plans,” in Proc. of
IEEE International Conference on Robotics and Automation, pp. 1861-1862,
Philadelphia, PA, Apr. 1988.

[47] L. S. Homem de Mello and A. C. Sanderson, “AND/OR Graph
Representation of Assembly Plans,” IEEE Trans. on Robotics and
Automation, Vol. 6, No. 2, pp. 188-199, Apr. 1990.

[48] L. S. Homem de Mello and A. C. Sanderson, “Representations of Mechanical
Assembly Sequences,” IEEE Trans. on Robotics and Automation, Vol. 7, No.
2, pp. 211-227, Apr. 1991.

[49] L. S. Homem de Mello and A. C. Sanderson, “A Correct and Complete
Algorithm for the Generation of Mechanical Assembly Sequences,” IEEE
Trans. on Robotics and Automation, Vol. 7, No. 2, pp. 228-240, Apr. 1991.

[50] L. S. Homem de Mello and A. C. Sanderson, “Two Criteria for the Selection
of Assembly Plans: Maximizing the Flexibility of Sequencing the Assembly
Tasks and Minimizing the Assembly Time Through Parallel Execution of
Assembly Tasks,” IEEE Trans. on Robotics and Automation, Vol. 7, No. 5,
pp- 626-633, Oct. 1991.

[51] S. A. Hutchinson and A. C. Kak, “Spar: A Planner That Satisfies Operational
and Geometric Goals in Uncertain Environments,” Al Magazine, pp. 30-61,
Spring 1990.

(52] M. Jantzen, “Structured Representation of Knowledge by Petri Nets as an aid
for Teaching and Research,” in Net Theory and Applications (Lecture Notes in
Computer Science 84), New York: Springer-Verlag, pp. 507-516, 1980.

[53] M. D. Jeng, Theory and rzzlﬁj;;rikications of Resource Control Petri Nets for
Automated Manufacturing Systems, Ph.D. Thesis, Rensselaer Polytechnic
Institute, Aug. 1992.

[54] K. Jensen, “Coloured Petri Nets,” in Advances in Petri Nets 1986, Vol. 254,
New York: Springer-Verlag, pp. 288-299, 1988.

[55] W. Jentsch and F. Kaden, “Automatic Generation of Assembly Sequences,”
in Artificial Intelligence and Information-Control Systems of Robots, 1.
Plander, Ed. Amsterdam: Elsevier Science Publishers, pp. 197-200, 1984.

[56] M. S. Kamel and P. M. Kaufmann, “Representing Uncertainty in Robot Task
Planning,” in Proc. of IEEE International Conference on Robotics and
Automation, pp. 1728-1734, 1988.

[57] A. Kandel, “Fuzzy Techniques in Pattern Recognition,” New York: John
Wiley & Sons, 1982.

(58] B. H. Krogh, “Controlled Petri Nets and Ma#imélly Permissive Feedback
Logic,” in Proc. of 25 Allerton Conference on Communication, Control and
Computing, pp. 317-326, Oct. 1987.

[59] J. U. Korein and J. Ish-shalom, “Robotics,” IBM Systems Journal, pp. 55-95,
Vol. 26, No. 1, 1987.

[60] J.-C. Latombe, A. Lazanas, and S. Shekhar, “Robot Motion Planning with
Uncertainty in Control and Sensing,” Artificial Intelligence, Vol. 52, pp. 1-47,
Nov. 1991.

|
]

I

[

A

Kl il

i

il

SN (%

Bl

213

[61] K. Lautenbach, “Liveness in Petri nets,” St. Augustin, Gesellschaft fur
Mathematik und Datenverarbeitung Bonn, Interner Bericht ISF-75-02.1, 1975.

[62] K. Lee and J. Favrel, “Hierarchical Reduction Method for Analysis and
Decomposition of Petri Nets,” IEEE Trans. on Systems, Man, and
Cybernetics, Vol. 15, No. 2, pp. 272-281, 1985.

[63] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller — Part
1,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 20, No. 2, pp.
404-418, 1990.

[64] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part II,”
IEEE Trans. on Systems, Man, and Cybernetics, Vol. 20, No. 2, pp. 419-435,
1990.

[65] K. S. Leung and W. Lam, “Fuzzy Concepts in Expert Systems,” IEEE
Computer Magazine, Vol. 21, No. 9, pp. 43-56, 1988.

[66] L. I. Lieberman and M. A. Wesley, “AUTOPASS: An Automatic
Programming System for Computer Controlled Mechanical Assembly,” IBM
Journal of Research and Development, Vol. 21, No. 4, pp. 321-333, 1977.

[67] N. K. Liu and T. Dillon, “An Approach Towards the Verification of Expert
Systems Using Numerical Petri Nets,” International Journal of Intelligent
Systems, Vol. 6, pp. 255-276, 1991.

[68] C. G. Looney, “Fuzzy Petri Nets for Rule-Based Decisionmaking,” IEEE
Trans. on Systems, Man, and Cybernetics, Vol. 18, No. 1, pp. 178-183,
Jan./Feb. 1988.

[69] E. Lopez-Mellado and R. Alami, “A Failure Recovery Scheme for Assembly
Workeells,” in Proc. of IEEE International Conference on Robotics and
Automation, Cincinnati, OH, pp. 702-707, May 1990.

[70] T. Lozano-Pérez, “Task planning,” in Robot Motion: Planning and Control, J.
M. Brady et al., Eds. Cambridge, MA: MIT Press, pp. 473-498, 1982.

[71] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic Synthesis of
Fine-Motion Strategies for Robots,” The International Journal of Robotics
Research, Vol. 3, No. 1, pp. 3-24, 1984.

[72] E. H. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with
a Fuzzy Logic Controller,” International Journal of Man-Machine Studies,
Vol.7, No. 1, pp. 1-13, 1975.

[73] M. Ajmone Marson, G. Balbo, and G. Conte, “A Class of Generalized
Stochastic Petri Nets for the Performance Analysis of Multiprocessor
Systems,” ACM Trans. on Computer Systems 2(1), May, 1984.

[74] M. Ajmone Marson, G. Balbo, G. Chiola, and G. Conte, “Generalized
Stochastic Petri Nets Revisted: Random Switches and Priorities,” in Proc.
Int. Workshop on Petri Nets and Performance Models, IEEE-CS Press,
Madison, WI, USA, August, 1987.

[75] M. A. Marson, G. Balbo, and G. Conte, Performance Models of
Multiprocessor Systems, Cambridge, MA: The MIT Press, 1987.

[76] D. McDermott, “Robot Planning,” A/ Magazine, Summer 1992, pp. 55-79,
1992.

[77] W. van Melle, “A Domain-Independent Production-Rule System for
Consultation Programs,” in Proc. of International Joint Conference on
Artificial Intelligence, pp. 923-925, Tokyo, Japan, 1979.

[78] A. Merabet, “Synchﬂrc;rrxizé;tion of Operations in a Flexible Manufacturing Cell:
The Petri Net Approach,” Journal of Manufacturing Systems, Vol. 5, pp.
161-169, 1986.

[79] R. E. Miller, “A Comparison of Some Theoretical Models of Parallel
Computations,” IEEE Trans. on Computers, Vol. C-22, No. 8, pp. 710-717,
Aug. 1973.

[80] R. Miller, Some Relationships Between Various Models of Parallelism and
Synchronization, Report RC-5074, IBM T. J.-Watson Research Center,
Yorktown Heights, New York, Oct. 1974.

[81] S. Moriguchi and G. S. Shedler, “Diagnosis of Computer Systems By
Stochastic Petri Nets,” leice Trans. on Fundamentals of Electronics
Communications and Computer Sciences, Vol. ET5A, pp. 1369-1377, Oct.
1992.]

[82] G. H. Morris and L. S. Haynes, “Robotic Assembly by Constraints,” In Proc.
of IEEE International Conference on Robotics and Automation, pp.
1507-1515, Raleigh, North Carolina, 1987.

[83] M. S. Mujtaba, R. A. Goldman, and T. Binford, “The AL Robot
Programming Language,” Computer Engineering, Vol. 2, pp. 77-86, 1982,

[84] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proc. of the
IEEE, Vol. 77, No. 4, pp. 541-580, Apr. 1989.

[85] Y. Narahari and N. Viswanadham, “A Petri Net Approach to the Modeling
and Analysis of Flexible Manufacturing Systems,” Annals of Operations
Research, Vol. 3, pp. 449-472, 1985.

[86] C. V. Negoita, Expert Systems and Fuzzy Systems, Massachusetts:
Benjamin/Cummings, 1985.

[{T— L

LT

L {1

1

,‘
[,

u

Wikl
Hiw

[LR

L L T TR TR

1o

215

[87] N. J. Nilsson, Principles of Artificial Intelligence, Los Altos, California: Tioga
Pub. Co., 1980.

[88] J. L. Peterson, “Pétri Nets,” Computer Surveys, Vol. 9, No. 3, pp. 223-252,
Sept. 1977.

[89] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall,
1981.

[90] C. A. Petri, Kommunikation mit Automaten, Ph.D. dissertation, University of
Bonn, Bonn, West Germany, 1962, (in German).

[91] A. J. Pettofrezzo, Introductory Numerical Analysis. D. C. Heath and
Company 1966.

[92] R. J. Popplestone, Y. Liu, and R. Weiss, “A Group Theoretic Approach to
Assembly Planning,” AI Magazine pp. 82-97, Spring 1990.

[93] C. V. Ramamoorthy and G. S. Ho, “Performance Evaluation of Asynchronous
Concurrent Systems Using Petri Nets,” IEEE Trans. on Software
Engineering, Vol. SE-6, No. 5, pp. 440-449, 1980:

[94] W. Riddle, The Modeling and Analysis of Supervisory Systems, Ph.D.
dissertation, Computer Science Department, Stanford University, Stanford,
CA, March 1972.

[95] Hans Riesel, Prime Numbers and Computer Methods for Factorization.
Birkhauser Boston, Inc. 1985.

(96] E. Sacerdoti, A Structure for Plans and Behavior. New York: North-Holland,
1977.

[97] J. K. Salisbury, “Active Stiffness Control of a Manipulator in Cartesian
Coordinates, M. T. Mason and J. K. Salisbury(eds.): Robot Hands and the
Mechanics Manipulation, Cambridge, MA: MIT Press, pp. 95-108, 1985.

[98] A. C. Sanderson, “Parts Entropy Methods for Robotic Assembly,” in Proc. of
IEEE International Conference on Robotics and Automation, pp. 600-608,
1984.

[99] A. C. Sanderson, M. A. Peshkin and L. S. Homem de Mello, “Task Planning
for Robotic Manipulation in Space Applications,” IEEE Trans. on Aerospace
and Electronic Systems, Vol. 24, No. 5, pp. 619-629, 1988.

[100] A. C. Sanderson, L. S. Homem de Mello, and H. Zhang, “Assembly Sequence
Planning”, AI Magazine, pp. 62-81, Spring 1990.

216

(101] A. C. Sanderson and T. Cao, Petri Net Based Task Planning for Garment
Handling System, Technical Report, FIT/CMPTT, RPI, Dec. 1990.

[102] A. C. Sanderson and T. Cao, Object-oriented Integration for Garment
Handling System, Technical Report, FIT/CMPTT, RPI, Dec. 1990.

(103] M. Stefik, “Planning with Constraints(MOLGEN: Part 1),” Artificial
Intelligence, 16: 111-140, 1981.

(104] M. Stefik, “Planning and Meta-Planning(MOLGEN: Part 2),” Artificial
Intelligence, 16: 141-170, 1981.

[105] R. H. Sturges, Jr. “A Three-dimensional Assembly Task Quantification with
Application to Machine Dexterity,” The International Journal of Robotics
Research, Vol. 7, No. 4, pp 34-78, 1988.

[106] I. Suzuki and T. Murata, “A Method for Stepwise Refinement and
Abstraction of Petri Nets,” Journal of Computer and System Sciences, Vol.
27, pp.51-76, 1983.

[107] H. Tahani and J. M. Keller, “Information Fusion in Computer Vision Using
the Fuzzy Integral,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 20,
No. 3, May/June, 1990.

[108] R. H. Taylor, P. D. Summers, and J. M. Meyer, “AML: A Manufacturing
Language,” The International Journal of Robotics Research, Vol. 1, No. 3, pp.
19-41, 1982.

[109] F. Thomas and C. Torras, “Constraint-Based Inference of Assembly
Configurations,” in Proc. of IEEE International Conference on Robotics and
Automation, pp. 1304-1305, 1988.

(110] K. Tsuji and T. Matsumoto, “Extended Petri Net Models for Neural
Networks and Fuzzy Inference Engines,” in Proc. of IEEE International
Symposium on Circuits and Systems, pp. 2670-2673, 1990.

[111] R. Valette, “Analysis of Petri Nets by Stepwise Refinements,” Journal of |
Computer and System Sciences, Vol. 18, pp. 35-46, 1979.

(112] R. Valette, J. Cardoso and D. Dubois, “Monitoring Manufacturing Systems
by Means of Petri Nets with Imprecise Markings,” in Proc. of IEEE
International Symposium on Intelligent Control, pp. 233-237,1989.

[113] R. Valette and M. Courvoisier, “Petri Nets and Artificial Intelligence,”
International Workshop on Emerging Technologies for Factory Automation,
North Queensland, Australia, Aug. 17-19, 1992.

WL W 8 K W

moy

Wi

Wu; ;\

Kiill

i

/
il

re

mw "l

re= irt §

r

1l

217

[114] S. Vere, Planning in Time: Window and Durations for Activities and Goals,
Jet Propulsion Lab, Pasadena, CA, 1981.

[115] R. Vijaykumar and M. A. Arbib, “Problem Decomposition for Assembly
Planning,” in Proc. of IEEE International Conference on Robotics and
Automation, 1987, pp. 1361-1366.

[116] N. Viswanadham and Y. Narahari, Performance Modeling of Automated
Manufacturing Systems. Englewood Cliffs, NJ: Prentice Hall, 1992.

[117] D. E. Whitney, “Force Feedback Control of Manipulator Fine Motions,”
Journal of Dynamic Systems, Measurement, and Control, 98: 91-97, 1977.

[118] D. E. Wilkins, “Domain-independent Planning: Representation and Plan
Generation,” Artificial Intelligence 22(1984) 269-301.

[119] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353,
1965.

[120] D. Zhang, “Planning with Pr/T Nets,” in Proc. of IEEE International
Conference on Robotics and Automation, pp. 769-775, Sacramento, CA, Apr.
1991.

[121] W. Zhang, “Representation of Assembly and Automatic Robot Planning by
Petri Net,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 19, No. 2,
pp. 418-422, 1989.

[122] M. C. Zhou, F. DiCesare, and A. A. Desrochers, “A Top-down Approach to
Systematic Synthesis of Petri Net Models for Manufacturing System,” Proc.
of IEEE International Conference on Robotics and Automation, pp. 534-539,
Scottsdale, AZ, May 1989.

[123] M. C. Zhou and F. DiCesare, “Adaptive Design of Petri Net Controllers for
Error Recovery in Automated Manufacturing Systems,” IEEE Trans. on
Systems, Man, and Cybernetics, Vol. 19, No. 5, pp. 963-973, Sep./Oct. 1989.

[124] M. C. Zhou and F. DiCesare, “Parallel and Sequential Mutual Exclusiops'for
Petri Net Modeling of Manufacturing Systems with Shared Resources,” IEEE
Trans. on Robotics and Automation, Vol. 7, No. 4, pp. 515-527, Aug. 1991

[125] M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems, Boston, MA: Kluwer Academic Publishers, 1993.

WD

“
I

1

